TIFR M.Sc. CHEMISTRY ENTRANCE - 2010

1. What is $\left[\mathrm{H}^{+}\right]$in 1.0 L solution that contains 0.2 M of $\mathrm{NH}_{4} \mathrm{Cl}$?
(a) $1.1 \times 10^{-5} \mathrm{M}$
(b) $1.9 \times 10^{-3} \mathrm{M}$
(c) $1.8 \times 10^{-5} \mathrm{M}$
(d) Not solvable with the information given
2. It is not easy to locate H atoms in the structure of proteins obtained by X-rays diffraction due to which the following reasons:
(a) H atoms are transparent to the X -rays
(b) H-bonding interaction present in protein structure
(c) interaction of H with solvent molecules
(d) Very low levels of scattering of X-rays by H
3. Glucose and galactose (found in the human body) are related to each other as :
(a) Enantiomers 4
(b) Anomers
(c) Epimers
(d) L-sugars
4. Consider the formation of $\mathrm{MgO}(\mathrm{s})$. Assume that $\Delta \mathrm{H}_{r}^{\circ}$ and $\Delta \mathrm{S}_{r}^{\circ}$ are independent of temperature.

$\operatorname{Mg}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \operatorname{MgO}(\mathrm{s})$

$\Delta \mathrm{H}_{\mathrm{r}}^{\circ}=-602 \mathrm{~kJ} / \mathrm{mol}$

Calculate $\Delta \mathrm{G}_{\mathrm{r}}^{\circ}$ for the formation of $\mathrm{MgO}(\mathrm{s})$ at $0^{\circ} \mathrm{C}$ and is the reaction spontaneous or non-spontaneous at $0^{\circ} \mathrm{C}$?
(a) $-573 \mathrm{~kJ} / \mathrm{mol}$, non-spontaneous
(b) $-573 \mathrm{~kJ} / \mathrm{mol}$, spontaneous
(c) $632 \mathrm{~kJ} / \mathrm{mol}$, non-spontaneous
(d) $-632 \mathrm{~kJ} / \mathrm{mol}$, spontaneous
5. Rank the following molecules in order if electrophillicity (from most to least electrophilic):

TIFR 2010

(i)

(ii)

(iii)

(iv)
(a) ii $>$ iii $>$ iv $>$ i
(b) i $>$ iv $>$ iii $>$ ii
(c) ii $>$ iv $>$ iii $>$ i
(d) i $>$ iii $>$ iv $>$ ii
6. Which of the following transitions is the highest energy transition in any given organic molecule?
(a) n to σ^{*}
(b) n to π^{*}
(c) σ to σ^{*}
(d) π to π^{*}
7. How many absorption lines will the following naturally occurring compound have in its proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectrum? IT
(a) 3

(b) $4 \quad$ (c) 5
(d) 6
8. What would be the final major product of the following chemicalreaction if is carried out twice, once at $5^{\circ} \mathrm{C}$ and the second time at $45^{\circ} \mathrm{C}$?
(a)

(c)

(d)

TIFR 2010

9. $\quad 0.1 \mathrm{M}$ solution of a compound transmits 10% of the incident light. Another solution of the same compound transmits 1% of the incident light of the same wavelength in the same container. Calculate concentration of the solution.
(a) 0.02 M
(b) 0.20 M
(c) 0.21 M
(d) 0.11 M
10. A polypeptide chain has six-SH groups. Any two SH groups can combine to give a disulphide (-S-S-) bond. If such combinations are allowed to take place randomly, how many different protein structures can be formed?
(a) 12
(b) 15
(c) 30
(d) 36
11. Consider the following reaction carried out in presence of catalyst, C :

$$
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{dD}+\mathrm{eE}
$$

The rate law for this reaction is, rate $=k[A]^{q}[B]^{r}[C]^{s}$
Which of the following statement is false?
(a) The exponents q, r and s are often integers
(b) The overall reaction order is $q+r+s$.
(c) The exponents q and r are always equal to the coefficients a and b, respectively.
(d) The exponents must be determined experimentally.
12. The crystal lattice structure of sodium, vanadium and molybdenum is BCC (Body centered cubic). Which of the following metallic mixtures are mostlikely to form a solid solution?
(a) V and Mo
(b) V and Na \qquad (c) Mo and Na
(d) $\mathrm{Na}, \mathrm{V}, \mathrm{Mo}$
13. FBCE is a rectangle. $A B C D$ is a square in it with length of each side being of unit length. If $A X$ has length of x units then the length of $F A$ is given by

(a) $2(1-x)$
(b) $\frac{x}{1-x}$
(c) $\frac{1}{4 x^{2}}$
(d) $\frac{2 x^{2}}{(1-x)}$
14. At $1000^{\circ} \mathrm{K}$ for the following two equilibria, the representative K_{p} values are given :
(i) $\mathrm{CaCO}_{3} \leftrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
(ii) $\mathrm{C}+\mathrm{CO}_{2} \leftrightarrow 2 \mathrm{CO}$
$K_{p}=4.0 \times 10^{-2} \mathrm{~atm}$
$\mathrm{K}_{\mathrm{p}}=2.0 \mathrm{~atm}$

Solid Carbon (C), $\mathrm{CaO}, \mathrm{CaCO}_{3}$ are mixed and allowed to attain equilibrium at $1000^{\circ} \mathrm{K}$. What is the pressure of CO achieved at equilibrium?
(a) 0.56 atm
(b) 0.08 atm
(c) 2.8 atm
(d) 0.28 atm
15. Assume that a carnot engine is working in reverse in a refrigerator, with perfect thermodynamic efficiency. Calculate the amount of work needed (i) to freeze 100 g of water at $0^{\circ} \mathrm{C}$, the temperature of the surrounding being $25^{\circ} \mathrm{C}$; (ii) to withdraw the same amount of heat from a body at $10^{-5} \mathrm{~K}$, the surrounding being at 1 K . $\left(\Delta H_{\text {melt }}=0.01 \mathrm{~kJ} / \mathrm{mol}\right)$
(a) (i) 601 kJ ; (ii) 601 kJ
(b) (i) 33.4 kJ ; (ii) 33.4 kJ
(c) (i) 3.06 kJ ; (ii) 33.4 kJ
(d) (i) 3.06 kJ ; (ii) $33.4 \times 10^{5} \mathrm{~kJ}$
16. What is the empirical formula for the following unit cell:
(a) $\mathrm{CaTi}_{12} \mathrm{O}_{8}$
(b) $\mathrm{CaTl}_{8} \mathrm{O}_{12}$
(c) CaTiO_{3}
(d) $\mathrm{CaTi}_{2} \mathrm{O}_{3}$
17. Which of the parallelogram in the figure below are viable unit cells?

(a) i
(b) ii
(c) iii
(d) all of the above
18. The following reaction is at equilibrium in a cylinder fitted with a movable plunger.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})
$$

If the volume is decreased at constant temperature by moving the plunger, will the concentration of $\mathrm{NO}_{2}(\mathrm{~g})$ be higher or lower than the original concentration when the equilibrium is reestablished?
(a) The concentration of NO_{2} will decrease, as Le Chatelier principle predicts that the equilibrium must shift so as to oppose/minimize/relieve the total pressure.
(b) The concentration of NO_{2} will increase.
(c) The concentration of NO_{2} will decrease. If the volume is decreased, the equilibrium must shift to produce fewer molecules. Thus the equilibrium must shift to produce fewer molecules. Thus the equilibrium must shift to the left.
(d) The change in the concentration of NO_{2} is not certain. Le Chatelier principle predicts that the equilibrium must shiff to the left to minimize the total pressure. However, the volume has decreased, so the number of NO_{2} molecules must also decrease, making it difficult to say whether the concentration of NO_{2} would decrease or increase.
19. To a green solution of $\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$, a small quantity of ammonia was added, which turned the solution blue through formation of $\mathrm{Ni}\left(\mathrm{HO}_{3}\right)_{6}{ }^{2+}$. The value of the equilibrium constant K for this reactions is -10^{9}. To this blue solution, the same number of moles of a chelating ligand ethylenediamine (en) were added, turning the solution violet through formation of $\mathrm{Ni}(\mathrm{en})_{3}{ }^{2+}$. The value of K for this reaction is also $\sim 10^{9}$. Using these same quantities, what would happens if en was added first, then ammonia was added?
(a) The violet solution would turn blue. -
(b) The violet solution would stay violet.
(c) There will be an equimolar mixture of $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$, giving the solution a colour which is an intermediate between blue and violet.
(d) The question cannot be answered without knowing the concentrations and the volumes of all the reactants.
20. In a mass spectrum of bromine molecule shows three peaks due to the species $\mathrm{Br}_{2}{ }^{+}$with the mass numbers 158,160 and 162 . Which isotopes of bromine occur in nature?
(a) ${ }^{79} \mathrm{Br}$ and ${ }^{80} \mathrm{Br}$
(c) ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$

TIFR 2010

(b) ${ }^{80} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$
(d) ${ }^{79} \mathrm{Br},{ }^{80} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$
21. Two $120-\mathrm{cm}$ long test tubes are filled with mercury and then placed in a mercury reservoir in an inverted position, as shown below. The height of the test tubes above the mercury pool is 100 cm . Syringes are used to bring drops of $\mathrm{H}_{2} \mathrm{O}$ and ethanol to the top of columns of Hg , as shown below. Drops are added till a small amount after the addition? The experiment is done at normal temperature and pressure.

22. Scanning tunneling microscopy depends upon the flow of electricity (current) between a surface and an atomically-sharp probe tip. Two plots of current vs. Tip-to-surface

(a) A
(b) B
(c) If the tip is more conducting than the surface, then the answer is A. Otherwise, the answer is B.
(d) Insufficient information is given to answer the question.
23. For each of compounds below, choose the one in which the indicate hydrogen is farthest upfield in a proton NMR spectrum :
(A)

1

2

3

4
(B)

1

2

3

4
(C) $\mathrm{H}_{2} \mathrm{C}=\mathrm{H}_{2}$

2

3
1
(a) A3 or A4, B4, C1
(b) A1, B2, C3
(c) A2, B3, C2
24. Consider the following two infinite series:
$A=\sum_{n=0}^{n=\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad B=\sum_{n=0}^{n=\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$, where x is real
What is the value of $A^{2}+B^{2}$
(a) 0
(b) $+\infty$

$\left\langle H_{A} A_{1}\right.$

(c) 1
(d) Its value cannot be defines, as the series A and B are divergent.
25. Four separate solutions are present in separate containers: $\mathrm{HCL}, \mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{CH}_{3} \mathrm{COOK}$. What possible pars can be used to make a buffer solution?
(a) HCl and $\mathrm{CH}_{3} \mathrm{COOK}$
(b) NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COOK}$
(d) All of the above

TIFR 2010

26. It is well known that the structure of ethylene $\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ is planar. Hence, what would be the structure of allene $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}\right)$ and cumulene $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}\right)$?
(a) Both will be planar
(b) Both will be staggered
(c) Allene will be planar, and cumulene will be staggered
(d) Allene will be staggered, and cumulene will be planar
27. In the T_{d} molecule $M X_{4}$, the A_{1} vibrational mode corresponds to all the $M-X$ bonds stretching the same distance simultaneously. With which spectroscopic technique is this vibrational mode observable?
(a) IR

(b) Raman

An organic molecule A on photoexcitation goes to ${ }^{1} \mathrm{~A}^{*}$. Its various decay channels are shown below. You measure the concentration of ${ }^{3} A^{*}$ as a function of time using a fastresponse spectrometer, in order to determine the intersystem crossing rate constant $\mathrm{k}_{\text {ISC }}$. Assume that the lifetime of ${ }^{3} \mathrm{~A}^{*}$ is very long compared to the other kinetic processes shown there. Which of the following statements would be true for this experiment?

(a) The decay of ${ }^{1} \mathrm{~A} *$ will be multi-exponential
(b) The formation of ${ }^{3} \mathrm{~A}^{*}$ will be single exponential.
(c) Plotting the concentration of $\left[{ }^{3} \mathrm{~A}^{*}\right]$ as a function of time, and fitting it to a single exponential will not give $\mathrm{k}_{\text {ISC }}$.
(d) Both (b) and (c) above.
29. Consider the four sulphates $\mathrm{FeSO}_{4}, \mathrm{MnSO}_{4}, \mathrm{ZnSO}_{4}$. Four separate capsules of these materials have been made containing 0.1 mole of the substance and are suspended separately by a thread. Then a strong magnet is brought close to each capsule. Order these sulphates according to the strength of the response that the magnet will produce on these capsules.
(a) $\mathrm{MnSO}_{4}>\mathrm{FeSO}_{4}>\mathrm{CoSO}_{4}>\mathrm{ZnSO}_{4}$
(b) $\mathrm{FeSO}_{4}>\mathrm{MnSO}_{4}>\mathrm{CoSO}_{4}>\mathrm{ZnSO}_{4}$
(c) $\mathrm{ZnSO}_{4}>\mathrm{CoSO}_{4}>\mathrm{FeSO}_{4}>\mathrm{MnSO}_{4}$
(d) $\mathrm{CoSO}_{4}>\mathrm{FeSO}_{4}>\mathrm{MnSO}_{4}>\mathrm{ZnSO}_{4}$
30. $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ and $\mathrm{NO}(\mathrm{g})$ react to form NO_{2} according to the stoichiometric equation

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightarrow 3 \mathrm{NO}_{2}(\mathrm{~g}) \quad(\mathrm{R1})
$$

at a given temperature and pressure. A possible mechanism for this overall reaction is:
 disappearance of NlO_{5} in terms of the concentrations of the stable species and the rate constants given above?
(a) The mechanism given above is not correct since the resultant of the reaction $\mathrm{M} 1+\mathrm{M} 2+\mathrm{M} 3$ is not the original reaction R 1 .
(b) $-\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\mathrm{k}_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]\left(1-\frac{\mathrm{k}_{2}\left[\mathrm{NO}_{2}\right]}{\mathrm{k}_{2}\left[\mathrm{NO}_{2}\right]+\mathrm{k}_{3}[\mathrm{NO}]}\right)$
(c) $-\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\mathrm{k}_{\text {eff }}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right][\mathrm{NO}]$, where $\mathrm{k}_{\text {eff }}$ is some function of $\mathrm{k}_{1}, \mathrm{k}_{2}$ and k_{3}.
(d) $\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\mathrm{k}_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]\left(1+\frac{\mathrm{k}_{2}\left[\mathrm{NO}_{2}\right]}{\mathrm{k}_{2}\left[\mathrm{NO}_{2}\right]+\mathrm{k}_{3}[\mathrm{NO}]}\right)$
31. For a cell constructed with a $\mathrm{Cu}(\mathrm{s}) \mid \mathrm{Cu}^{2+}(\mathrm{aq})$ anode and $\mathrm{Ag}^{+} \mid \mathrm{Ag}(\mathrm{s})$ cathode at $25.0^{\circ} \mathrm{C}$, under non-standard conditions: $\left[\mathrm{CU}^{2+}\right]=0.300 \mathrm{M}$ and $\left[\mathrm{Ag}^{+}\right]=0.0500 \mathrm{M}$.
(a) 0.44 V
(b) 0.41 V
(c) 0.40 V
(d) 0.34 V
32. Photo-exciation promotes an electron from the HOMO (highest occupied molecular orbital) to the LUMO (lowest unoccupied molecular orbital) of a molecule. Between a molecule in its ground state and its excited state, which would be the stronger oxidant and the stronger reductant?
(a) The molecule in its ground state would be a stronger oxidant and also a stronger reductant.
(b) The molecule in its excited state would be stronger oxidant and also a stronger reductant.
(c) The molecule in its ground would be a stronger reductant, and in the excited state, a stronger reductant.
(d) The molecule in its ground state would be a stronger reductant, and in the excited state, a stronger oxidant.
33. The stretching frequency of the $0-\mathrm{H}$ is about $3600 \mathrm{~cm}^{-1}$. Compared to that, the stretching frequencies of $\mathrm{O}-\mathrm{D}$ and $\mathrm{S}-\mathrm{H}$ bonds are very similar and appear at about $2500 \mathrm{~cm}^{-1}$. What can you conclude from these data?
(a) The electronic structure of $\mathrm{O}-\mathrm{D}$ and $\mathrm{O}-\mathrm{H}$ are same, and that $\mathrm{S}-\mathrm{H}$ is different.
(b) The force constant of the bonds $\mathrm{O}-\mathrm{D}$ and $\mathrm{O}-\mathrm{H}$ is same.
(c) $\mathrm{S}-\mathrm{H}$ is a weaker bond than $\mathrm{O}-\mathrm{H}$ or $\mathrm{O}-\mathrm{D}$ bond.
(d) All of the above.
34. Read the following two statements carefully:

1. The change in total angular momentum that occurs when a diatomic molecule (i.e. a rigid rotor) changes rotational level from $J=2$ to $J=3$ is the same as the change in total angular momentum that occurs when an electron on a H atom changes from a d to an f orbital, i.e. from $\mathrm{l}=2$ tol$=3$.
2. The change in energy that occurs when a diatomic molecule (i.e. a rigid rotor) changes level from $J=2$ to $J=3$ is the same as the change in energy that occurs when an electron on H atom changes from a d to an f orbital, i.e. from $\mathrm{l}=2$ tol $=3$.

Based on the above, which of the following is the correct statement:
(a) Both statements 1 and 2 are true
(b) Both statements 1 and 2 are false
(c) Statement 1 is true, statement 2 is false
(d) Statement 1 is false, and statement 2 is true
35. At room temperature, which of the molecules are expected to give five NMR lines in the proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectrum?

(i)

(ii)

(iii)

(iv)

(v)

(vi)
(a) Only 1 and 3 (b) Only 2 and 6
(c) Only 3 and 6
(d) All of the above
36. Do you expect that the minimum energy necessary to eject a 3 selectron from phosphorus in a photoelectron spectroscopy experiment for the process.

$$
[\mathrm{Ne}] 3 s^{2} 3 p^{3} \rightarrow[\mathrm{Ne}] 3 s^{1} 3 p^{3}+e^{-}
$$

Be larger than, smaller than, or the same as the 4th ionization energy $\left(\mathrm{IE}_{4}\right)$ of phosphorus?
(a) Smaller
(b) Larger
(c) The same
(d) cannot be answered from the given information
37. An average human DNA molecule has 5×10^{8} base pairs, with four different kinds of bases. If the DNA sequence was completely random, what would be the residual entropy associated with this typical DNA molecule?
(a) $9.57 \times 10^{-15} \mathrm{JK}^{-1}$
(b) $4.15 \times 10^{-15} \mathrm{JK}^{-1}$
(c) $6.90 \times 10^{-15} \mathrm{JK}^{-1}$
(d) $1.38 \times 10^{-14} \mathrm{JK}^{-1}$
38. Consider the two diatomic molecules CN and CN^{-}, and the potential energy diagram shown below.

which of the following is the correct statement?
(a) Bond order of CN is 2.5 and the curve Y correspondsto CN .
(b) Bond order of CN is 3 and the curve X corresponds to CN .
(c) Bond order of CN is 3 and the curve Y corresponds to CN^{2}.
(d) Bond order of CN is 2.5 and the curve X corresponds to $C N^{2}$.
39.

Consider the following two matrices:
(a) 0
(b) The trace will be a realnumber, less than 0
(c) The trace will be a real number, greater than 0
(d) The trace will be a complex number
40. In valence-bond calculations, contributions of various resonance structures are used to calculate the total energy of a molecule. Given below are four resonance structures of the cyanate ion. Which one contributes least to the total energy.
(a) $: \mathrm{N} \equiv \mathrm{C}-\mathrm{O}$:
(b) ${ }^{2-}: \ddot{\mathrm{N}}-\mathrm{C} \equiv \mathrm{O}^{+}$
(c) $\stackrel{-\mathrm{N}}{\mathrm{N}}=\mathrm{C}=\ddot{\mathrm{O}}$
(d)

