BHU M.Sc. CHEMISTRY ENTRANCE - 2015

1. The plots of gaseous densities vs temperature and of liquid densities vs temperature for a substance converge at a temperature. The temperature is called
(a) boiling point
(b) Boyle temperature
(c) critical temperature
(d) inversion temperature
2. The RMS speed of $\mathrm{He}(\mathrm{g})$ at $0^{\circ} \mathrm{C}$ is $1300 \mathrm{~m}-\mathrm{S}^{-1}$. The most probable speed of the gas will be
(a) $1300 \mathrm{~m}-\mathrm{s}^{-1}$
(b) $866.6 \mathrm{~m}_{-\mathrm{s}^{-1}}$
(c) $1592.2 \mathrm{~m}-\mathrm{s}^{-1}$
(d) $1061.4 \mathrm{~m}-\mathrm{s}^{-1}$
3. The pseudo first order rate constants for the cobalt-catalysed auto-oxidation of toluene in acetic acid at $87^{\circ} \mathrm{C}$ at different concentrations of Co (III) are

4. For the reaction $2 A B_{2} \frac{\frac{k_{1}}{k_{1}}}{k_{-1}} A_{2} B_{4}$
the reaction rate for $A_{2} B_{4}$ formation is A g
(a) $2 \mathrm{k}_{1}\left[\mathrm{AB}_{2}\right]+\mathrm{k}_{-1}\left[\mathrm{~A}_{2} \mathrm{~B}_{4}\right]$
(b) $\left(2 \mathrm{k}_{1}-\mathrm{k}_{-1}\right)\left[\mathrm{AB}_{2}\right]$
(c) $\frac{2 \mathrm{k}_{1}}{\mathrm{k}_{-1}}\left[\mathrm{AB}_{2}\right]$
(d) $2 \mathrm{k}_{1}\left[\mathrm{AB}_{2}\right]^{2}-\mathrm{k}_{-1}\left[\mathrm{~A}_{2} \mathrm{~B}_{4}\right]$
5. The enzymolysis of a substrate has a Michaelis constant of $0.035 \mathrm{~mol}-\mathrm{L}^{-1}$ at $25^{\circ} \mathrm{C}$. The maximum rate of the reaction is $1.50 \times 10^{-3} \mathrm{~mol}-\mathrm{L}^{-1}-\mathrm{s}^{-1}$. What should be the concentration of the substrate for which the reaction rate would be reduced to $0.75 \times$ $10^{-3} \mathrm{~mol}-\mathrm{L}^{-1}-\mathrm{s}^{-1}$?
(a) $0.070 \mathrm{~mol}-\mathrm{L}^{-1}$
(b) $0.494 \mathrm{~mol}-\mathrm{L}^{-1}$
(c) $0.035 \mathrm{~mol}-\mathrm{L}^{-1}$
(d) $0.017 \mathrm{~mol}-\mathrm{L}^{-1}$
6. The entropy of activation for a reaction is related to the frequency factor (A) of Arrhenius equation as
(a) A
(b) $\ln \mathrm{A}$
(c) $\exp (\mathrm{A})$
(d) $\exp (-A)$
7. The mechanism of the reaction
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
Catalyzed by Br^{-}ions is
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{BrO}^{-}(\mathrm{aq})($ slow $)$
$\mathrm{BrO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{Br}^{-}(\mathrm{aq})$ (fast)
The overall order of the reaction is
8. Consider the following mechanism $\mathrm{A}_{2} \rightleftharpoons 2 \mathrm{~A}($ fast $)$
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}($ slow $)$
The overall order of the reaction is
(a) 0.5
(b) 1
(c)
(d) 2
9. The plot of the data on $\mathrm{p}(/$ Torr $) / \mathrm{V}\left(/ \mathrm{cm}^{3}\right)$ against p (Torr) for adsorption of CO on charcoal at 273 K has been found linear. What isotherm does the adsorption follow?
(a) Langmuir isotherm
(b) Freundlich isotherm
(c) BET isotherm
(d) Temkin siotherm
10. A crystal system characterized by $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$ and $\alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$ is
(a) triclinic
(b) monoclinic
(c) rhombic
(d) trigonal
11. The Miller indices of the planes with intercepts $4 a, 6 b$ and ∞ whereas b and c are the unit cell edge lengths are
(a) $3,2,0$
(b) $2,3,0$
(c) $0,2,3$
(d) $4,6, \infty$
12. A powder diffraction photograph from tungsten shows lines which index as (110), (200), (211), (220), (310), (222), (321), (400),....... The symmetry of the unit cell is
(a) simple cubic
(b) body-centred cubic
(c) face-centred cubic (d) edge-centred cubic
13. At the critical solution temperature of phenol-water system, the degree of freedom is
(a) 0
(b) 1
(c) 2
(d) 3
14. The SI unit of radiation energy is grey whereas the c.g.s. unit is rad. 1 grey is equal to
(a) 1 rad
(b) 10 rad
(c) 100 rad
(d) 1000 rad
15. The molar conductance of potassium ehtoride $\left(10^{-4} \mathrm{M}\right)$ increase substantially with increase in frequency of the applied potential. This is due to minimization of
(a) frictional forces
(b) electrophoretic effect
(c) relation effect
(d) electrophoretic and asymmetry effects
16. Which of the following cases for a perfect gas has $q=0$?
(a) Isothermal isobaric expansion
(b) Reversible isothermal expansion
(c) Isobaric adiabatic expansion
(d) Isothermal isobaric irreversible compression
17. For the process $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(1)$ in ice-water bath at $0^{\circ} \mathrm{C}$, which of the following statements is true?
(a) $\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H}$
(b) $\Delta \mathrm{H}>\mathrm{T} \Delta \mathrm{S}^{1}$
(c) $\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}^{1}$
(d) Δ G <0
18. One of the Gibbs equations
$d G=-S d T+V d P+\sum \mu_{i} \mathrm{dn}_{\mathrm{j}}$
does not apply when the system
(a) is in thermal equilibrium
(b) is in mechanical equilibrium
(c) involves P-V work only
(d) consists of any number of phases
19. A real solution is one which
(a) obeys Raoult's law(b) obeys Henry's law
(c) does not obey Henry's law
(d) does not obey Raoult's law
20. The molar conductivity of strong electrolyte decreases with concentration 1 c when c is sufficient low as
(a) linearly with c
(b) linearly with $\mathrm{c}^{1 / 2}$
(c) linearly with \log
(d) exponentially with c
21. Under what condition the equilibrium constant (K) of areaction become independent of temperature?
(a) $\Delta G^{\circ}<0$
(b) $\Delta \mathrm{H}^{\circ}<0$
(c) $\Delta \mathrm{H}^{\circ}>0$
(d) $\Delta H^{\circ}=0$
22. The oxidation potential of $\mathrm{M} \mid \mathrm{M}^{2+}$ is 40.76 V and the reduction potential of $\mathrm{A}^{+} \mid \mathrm{A}$ is +0.25 V . The e.m.f. of the cell $\mathrm{M}\left|\mathrm{M}^{2+} \| \mathrm{A}^{+}\right| \mathrm{A}$ is
(a) 1.01 V
(b) -0.51 V
(c) 0.51 V
(d) -1.01 V
23. The translational partition function (q) for the H_{2} molecule in a $100 \mathrm{~cm}^{3}$ vessel at 298 K is 2.77×10^{26}. The q for the D_{2} molecule under the same condition would be
(a) 5.54×10^{26}
(b) 3.29×10^{26}
(c) 21.25×10^{26}
(d) 7.83×10^{26}
24. The rotational partition function $\left(\mathrm{q}^{\mathrm{R}}\right)$ of an AB molecyle at $27^{\circ} \mathrm{C}$ is 19.6. What would be its q^{R} at $327^{\circ} \mathrm{C}$? HATA,
(a) 19.6
(b) 27.7
(c) 39.2
(d) 55.3
25. Which of the following molecules does not show a pure rotational spectrum?
(a) HCl
(b) trans- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(c) cis $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(d) CHCl_{3}
26. ${ }^{1} \mathrm{H}\left(\mathrm{g}_{1}=5.5857\right)$ resonates at 500 MHz in an NMR spectrometer operating at 11.7 tesla. What magnetic field would be necessary to observe the resonance of ${ }^{13} \mathrm{C}\left(\mathrm{g}_{1}=1.4046\right)$ at 500 MHz ?
(a) 11.7 tesla
(b) 2.9 tesla
(c) 23.4 tesla
(d) 46.8 tesla
27. The Gibbs-Duhem equation is
(a) $\sum_{\mathrm{i}} \mu_{\mathrm{i}} \mathrm{dn}_{\mathrm{i}}=0$
(b) $\sum_{\mathrm{i}} \mu_{\mathrm{i}} \mathrm{d} \pi_{\mathrm{i}} \neq 0$
(c) $\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \mathrm{d} \mu_{\mathrm{i}}=0$
(d) $\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \mathrm{d} \mu_{\mathrm{i}} \neq 0$
28. Which solvent would you prefer to determine the molar mass of a non-volatile non-ionic solute by freezing point depression method?
(a) $\operatorname{Water}\left(\mathrm{K}_{\mathrm{f}}=1.86 / \mathrm{K}\left(\mathrm{mol}-\mathrm{kg}^{-1}\right)^{-1}\right)$
(b) Phenol $\left(\mathrm{K}_{\mathrm{f}}=7.27 / \mathrm{K}\left(\mathrm{mol}-\mathrm{kg}^{-1}\right)^{-1}\right)$
(c) Benzene $\left(\mathrm{K}_{\mathrm{f}}=5.12 / \mathrm{K}\left(\mathrm{mol}-\mathrm{kg}^{-1}\right)^{-1}\right)$
(d) Camphor $\left(\mathrm{K}_{\mathrm{f}}=40 / \mathrm{K}\left(\mathrm{mol}-\mathrm{kg}^{-1}\right)^{-1}\right)$
29. The IR spectrum of $\mathrm{H}_{2} \mathrm{O}$ shows 3 bands. How many bands do you predict for CO_{2} ?
(a) 1
(b) 2
(c) 3
(d) 4
30. The minimum energy for which of the following system is zero?
(a) H -atom
(b) A vibrating diatomic molecule
(c) A rotating diatomic molecule
(d) A molecule confined to a 3D-box
31. $\mathrm{T}_{1 / 2}$ of ${ }^{3} \mathrm{H}$ is 12.3 years. If 48.0 mg of ${ }^{3} \mathrm{H}$ is released from a nuclear power plant during an accident, what mass of this nuclide would remain after 49.2 years?
(a) 6.0 mg
(b) 3.0 mg
(c) 12.0 mg
(d) 24.0 mg
32. It is found that a particle of mass m in a one-dimensional box of length L can be excited from $n=1$ to $n=2$ state by a light of frequency v. If the length of the box is doubled, the frequency needed to produce the $\mathrm{n}=1$ to $\mathrm{n}=2$ transition becomes
(a) $\mathrm{v} / 4$
(b) $v / 2$
(c) 2 v
(d) $4 v$
33. HI and DI are made to undergo the same transition from $\mathrm{J}=0 \rightarrow \mathrm{~J}=1$. The light frequency causing the transition for HI equals v. Approximately which frequency would you expect to induce the same transition in DI?
(a) $2 v$
(b) $\sqrt{2} \mathrm{v}$
(c) $v / 2$
(d) $v / \sqrt{2}$
34. The radial distribution function for 1 s state, $4 \pi r^{2} \psi_{1 s}^{2}$, indicates that
(a) the most probable value of the distance from the nucleus is zero
(b) the average value of r is zero
(c) the average value of r is greater than the most probable value
(d) the average value of r is less than the most probable value
35. Which one of the following statements about H_{2}^{+}is false?
(a) The non-degenerate LCAO-MOs (without spin) must be either symmetric or antisymmetric
(b) The lowest MO (without spin) of the molecule is antisymmetric for inversion
(c) The MOs transform into AOs of the helium ion as the two nuclei are fused together
(d) the ground state has a multiplicity of two
36. Which of the following functions are well behaved' quantum mechanically?
(a)

(b) $\exp (-a x)$
(c) x^{2}
(d) x
37. Which of the following is not an eigen function of $\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}$ operator?
(a) $\exp (a x)$
(b)
(b) $\exp \left(a x^{2}\right)$
(c) $a x+b$
(d) $\cos x$
38. The operator $-\frac{h^{2}}{2 m} \frac{d^{2}}{d x^{2}}$ represents
(a) linear momentum (b) angular momentum
(c) total energy
39. The electrophilic aromatic substitution proceeds through an intermediate
(a) phenyl cation
(b) σ complex
(c) benzene anion
(d) benzyne
40. Optically active 2-octanol rapidly loses its optical activity when exposed to the following
(a) Dilute acid
(b) Dilute base
(c) Light
(d) Humidity
41. The relative rates of nitration of $\mathrm{R}-\mathrm{C}_{6} \mathrm{H}_{5}$, where $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{NO}_{2}, \mathrm{OH}$ and Cl , is
(a) $\mathrm{CH}_{3}>\mathrm{OH}>\mathrm{NO}_{2}>\mathrm{Cl}$
(b) $\mathrm{CH}_{3}>\mathrm{OH}>\mathrm{Cl}>\mathrm{NO}_{2}$
(c) $\mathrm{OH}>\mathrm{CH}_{3}>\mathrm{NO}_{2}>\mathrm{Cl}$
(d) $\mathrm{OH}>\mathrm{CH}_{2}>\mathrm{Cl}>\mathrm{NO}_{2}$
42. Which of the following statements is not true for the E2 reactions?
(a) Bimolecular reaction
(b) Reactivity order is $\mathrm{RI}>\mathrm{RBr}>\mathrm{RCl}$
(c)

Rearrangement occurs (d) Reactivity order of RX is $3^{\circ}>2^{\circ}>1^{\circ}$
43. List the following compounds in the correct order of decreasing acidity
$\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(A)
$\mathrm{CH}_{3}=\mathrm{CH}_{3}$
(B)
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{O}$
(C)
$\mathrm{HC}=\mathrm{CH}$
(D)
(a) D $>$ C $>$ A $>$ B
(b) C $>$ D $>$ A $>$ B
(c) D $>$ A $>$ C $>$ B
(d) $\mathrm{C}>$ A $>$ D $>$ B
44. Which of the following carbocations is the most stable?
(a)
 (b)

(d)

45. Ziegler-Natta catalyst is
(a) $\mathrm{Et}_{2} \mathrm{O}^{2} \cdot \mathrm{BF}_{3}$
(c) Na-naphthalene
(b) $\mathrm{Et}_{3} \mathrm{Al} \cdot \mathrm{TiCl}_{4}$
(d) $\mathrm{Pd} / \mathrm{CaCO}_{3}$
quinoline
46. Pyridine undergoes electrophilic substitution with fuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ at elevated temperature to give
(a) pyridine-3-sulphonic acid
(b) pyridine-2-sulphonic acid
(c) pyridine-4-sulphonic acid
(d) All of the above
47. Which of the following elimination reactions will give 1 -butene as the major product?
(a)

(d)

48. Aldehydes and ketones can be converted into 1, 2-dicarbonyl compounds by reaction with
(a) periodic acid
(b) lead tetracetate
(c) peracetic acid
(d) selenium dioxide
49. Which of the following haloalkanes will undergo hydrolysis most readily?
(a) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
(c) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CF}$
(d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$
50. The reactant, M in the reaction below

can be
(a) o-bromoanisole
(c) either of o- or m-bromoanisole (d) None of the above
51. The product formed in the following electrophilic aromatic substitution reaction is
(a)

(c)

52. Which of the following compounds absorbs UV radiation?
(a) Ethanol
(b) Butylamine - A
(c) Acetone
(d) Chlorohexane
53. Benzaldehyde may be prepared by any of the following methods. Which one of these is called Stephen's method?
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN} \xrightarrow[\mathrm{HCl}]{\mathrm{SnCl}^{\mathrm{Cl}} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}}$
(b) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CO}+\mathrm{HCl} \xrightarrow{\mathrm{AlC}_{3}}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}+\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N}_{4} \xrightarrow[\Delta]{\mathrm{H}_{2} \mathrm{O} / \mathrm{EOHH}} \xrightarrow{\mathrm{H}^{+}}$
54. The reagent used in the transformation

is
(a) LiAlH_{4}
(b) NaBH_{4}
(c) $\mathrm{Zn}(\mathrm{Hg}) / \mathrm{HCl}$
(d) $\mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{OH}^{\oplus}$
55. Which of the following secondary alcohols can be prepared from the reaction of methyl formate with excess Grignard reagent?
(a)

56. Consider the following statements about conformational isomers:
(A) They are interconverted by rotation about single bond
(B) The energy barrier separating them is less than $15 \mathrm{kcal} /$ mole
(C) They are best represented by means of Fischer projection formulae

Of these statements:
(a) All A, B and Care correct
(b) Only B and C are correct
(c) Only A and C are correct $/$ LAT
(d) Only A and B are correct
57. Which of the following is not the product of ozonolysis of citral?
(a) Glyoxal
(b) Acetone
(c) Acetaldehyde
(d) Laevulaldehyde
58. Arrange the following three chlorides in decreasing order of $\mathrm{S}_{\mathrm{N}} 1$ reactivity
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CL}$
A

B

C
(a) A $>$ B $>$ C
(b) B $>$ C $>$ A
(c) B $>$ A $>$ C
(d) $\mathrm{C}>$ B $>$ A
59. Arrange the following carbanions in order of their decreasing stability

A

B

C

D
(a) A $>$ B $>$ C $>$ D
(b) B $>$ C $>$ D $>$ A
(c) A $>$ B $>$ D $>$ C
(d) B $>$ A $>$ C $>$ D
60. The α - and β - forms of D-glucopyranose are called
(a) anomers
(b) enantiomers
(c) epimers
(d) diastereomers
61. The methyl D-glucoside is made by treating D-glucose with the following
(a) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HCl}$
(b) aqueous $\mathrm{CH}_{3} \mathrm{OH}$
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}, \mathrm{NaOH}$
(d) $\mathrm{CH}_{3} \mathrm{OCH}_{3}, \mathrm{LiAlH}_{4}$
62. Select among the following carbohydrates whose complete hydrolysis give $\mathrm{D}(+)$ glucose as the only product
(A) Dextr
The correc
(a) A, B, C
(B) Starch

(D)Cellulose
(b) B, C, d
(c) A, C, D
(d) A, B, D
63. How many stereocentres are present in the small, naturally occurring protein glycylalanylalanine?
(a) One
(b) Two
(c) Three
(d) Zero
64. The reagent used in Edman method of N-terminal analysis of peptides is
(a) phenyl isothiocyanate
(b) 2,4-dichlorofluorobenzene
(c) 2, 4-dinitrofluorobenzene
(d) benzyl chloroformate
65. Select the reagent required to bring about the following transformation

(a) $\mathrm{KMnO}_{4}, \mathrm{NaOH}$
(b) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$
(c) $\mathrm{Cl}_{2} / \mathrm{OH}^{-}$, then H^{+}
(d) m-chloroperbenzoic acid
66. Which one of the following would clearly prove the configuration of cis-3-hexene from trans-3-hexene?
(a) Boiling point
(b) Rate of hydrogenation
(c) Dipole moment
(d) Infrared spectrum
67. Naphthalene undergoes nitration with a mixture of conc. HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $50^{\circ} \mathrm{C}$ to give mainly
(a) 1-nitronaphthalene
(b) 2-nitronaphthalene
(c) 1,3-dinitronaphthalene
(d) 1, 4-dinitronaphthalene
68. The most convenient spectroscopic technique to establish the presence of intermolecular hydrogen bonding in hydroxyl compounds is
(a) UV
(b) IR
(c) NMB
(d) None of these
69. The following yeaction proceeds through

70. Which one of the following aromatic substitution reactions is reversible?
(a) Nitration
(c) Halogenation
(b) Sulphonation
(d) Friedel-Crafts a cylation
71. Allylic bromination is carried out by $\backslash \wedge$,
(a) $\mathrm{HBr}, \mathrm{H}_{2} \mathrm{O}_{2}$
(b) HOBr
(c) $\mathrm{Br}_{2}, \mathrm{CS}_{2}$
(d) NBS
72. Which one of the following is the final product Z in the reaction sequence given below?

(a) $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
(b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COOH}$
(c) $\mathrm{HOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
(d) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOH}$
73. Which one of the following reactions is correctly shown?
(a) $\mathrm{ROH}+\mathrm{NaOH} \rightarrow \mathrm{RONa}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{ROH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{RONa}+\mathrm{H}_{2} \mathrm{CO}_{3}$
(c) $2 \mathrm{ROH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{RONa}+\mathrm{H}_{2} \mathrm{CO}_{3}$
(d) $\mathrm{PhOH}+\mathrm{NaOH} \rightarrow \mathrm{PhONa}+\mathrm{H}_{2} \mathrm{O}$
74. Identify the chiral compound that is oxidized with alkaline KMnO_{4} to benzoic acid
(a)

(b)

(c)

(d) -
75. Natural rubber is a polymer made up of the following monomer units
(a) Butadiene (b) Neoprene
(c) Isoprene
(d) Chloroprene
76. Which of the following compounds can be used as a solvent in Eriedel-Crafts reaction?
(a) Acetic anhydride
(b) Nitrobenzene
(c) Anisole
(d) Toluene
77. Oxygen may be prepared by heating potassium chlorate. What is the other product?
(a) Potassium oxide
(b) Potassium chloride
(c) Potassium hypochlorite
(d) Potassium chlorite
78. From each pair given below, identify the ion which islarger in size:

$$
\left[\mathrm{Co}^{2+}, \mathrm{Co}^{3+}\right]\left[\mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}\right]\left[\mathrm{Na}^{+}, \mathrm{F}^{-}\right]\left[\left[\mathrm{O}^{2-}, \mathrm{S}_{-j}^{2-}\right]\right.
$$

(a) $\mathrm{Co}^{2+}, \mathrm{Zn}^{2+}, \mathrm{F}^{-}, \mathrm{S}^{2-}$
(b) $\mathrm{Co}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Na}^{+}, \mathrm{S}^{2-}$
(c) $\mathrm{Co}^{2+}, \mathrm{Fe}^{2+}, \mathrm{F}^{-}, \mathrm{S}^{2-}$
(d) $\mathrm{Co}^{3+}, \mathrm{Zn}^{2+}, \mathrm{Na}^{+}, \mathrm{O}^{2-}$
79. How many unpaired electrons are there in an atom of silver in its ground state?
(a) 0
(b) 1
(c) 2
(d) 4
80. How many moles of $\mathrm{P}_{4} \mathrm{O}_{10}$ will react with one mole of water?
(a) 2 moles
(b) 6 moles
(c) $1 / 3$ mole
(d) $1 / 6$ mole
81. If 22 g of $\mathrm{N}_{2} \mathrm{O}_{5}$ reacts with 10 g of water to produce 22 g of nitric acid, what is the percentage yield of nitric acid?
(a) 32%
(b) 69%
(c) 87%
(d) 100%
82. 10 ml of 0.10 N sodium hydroxide is added to 20 ml 0.10 N sulphuric acid and the resultant solution is titrated against 0.10 N sodium hydroxide. What will be the titre value at the end point?
(a) 5 ml
(b) 10 ml
(c) 20 ml
(d) 30 ml
83. An aqueous solution of a substance gives a white precipitate when a few drops of sodium hydroxide are added. The precipitate dissolves when excess of sodium hydroxide is added. The substance may be
(a) aluminium sulphate
(b) silver nitrate
(c) cadmium chloride (d) mercuric chloride
84. Which reagent may be used to precipitate barium from aqueous solutions?
(a) Hydrochloric acid (b) Sulphuric acid
(c) Silver nitrate
85. A non-stoichiometric oxide of silver has composition $\mathrm{Ag}_{1.8} \mathrm{O}$. What percentage of Ag is present in the form Ag^{2+} ?
(a) 11%
(b) 14%
(c) 20%
(d) 25%
86. A sample of water contains 200 p.p.m. of Ca^{2+} in it. What is the molality of the solution with respect to Ca ?
(a) 0.2 m
(b) 2 m
$A A$ (c) $5 \times 10^{-3} \mathrm{~m}$
(d) 0.05 m
87. Which of the following is not a crystalline substance?
(a) Glass
(b) Quartz
(c) Chalk
(d) Diamond
88. What is the charge (n) on the silicate ion $\mathrm{Si}_{2} \mathrm{O}_{7}{ }^{\mathrm{n}}$?
(a) -2
(b) -4
(c) -6
(d) -7
89. Silver is extracted from the crude metal by leaching with a solution of NaCN in the presence of air. The role of NaCN is to
(a) oxidize Ag to Ag^{+}(b) form the complex $\left[\mathrm{Ag}(\mathrm{CN})_{4}\right]^{3-}$
(c) form the complex $\left[\operatorname{Ag}(\mathrm{CN})_{4}\right]^{2-}$
(d) form the complex $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$
90. CoCl_{4}^{2-} and $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$ have different colours. This is because
(a) they have Co in different oxidation states
(b) they have different coordination geometries
(c) they have different number of unpaired electrons
(d) they have Co in different oxidation states and bound to different ligands
91. CuI_{2} is unstable, because it readily decomposes to
(a) Cu and I^{-}
(b) Cu and I_{2}, I (c) CuI and I_{2}
(d) CuIand ${ }^{-}$
92. Which one among the chlorides, $\mathrm{ZnCl}_{2}, \mathrm{HgCl}_{2}, \mathrm{BaCl}_{2}, \mathrm{AlCl}_{3}$ is dissociated to the least extent in aqueous solutions?
(a) ZnCl_{2}
(b) HgCl_{2}
(c) BaCl_{2}
(d) AlCl_{3}
93. Which one among the given ions, has the highest polarizing power?
(a) Na^{+}
(b) Ca^{2+}
(c) Mg^{2+}
(d) Al^{3}
94. Which compound can act as a Lewis acid as well as a Lewis base?
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) SnCl_{2}
(c) NH_{3}
(d) BF_{3}
95. Perovskite is the mineral CaTiO_{3}. The perovskite crystal structure is adopted by several oxides as well as some fluorides. Which one, among the given formulae most likely represents a known fluoride having the perovskite structure?
(a) CaTiF_{3}
(b) KZnF_{3}
(c) CaTiF_{5}
(d) CaMgF_{3}
96. In its reaction with aqueous solutions of Cu^{2+}, the cyanide ion is similar to
(a) CO
(b) Cl^{-}
(c) I_{2}
(d) I^{-}
97. Which ligand can lead to linkage isomers?
(a) Azide
(b) Cyanate
(c) Oxalate
(d) Nitrate
98. The boron mineral, borax contains the anion, $\left[\mathrm{H}_{4} \mathrm{~B}_{4} \mathrm{O}_{9}\right]^{2-}$. What is the formal oxidation number of B in this anion?
(a) 2.5
(b) 3
(c) 3.5
(d) 4
99. Two isomers are obtained for $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$, while only one isomer is obtained for $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. This is because
(a) the two complexes differ in the oxidation state of the metal
(b) the two complexes differ in the oxidation state of the metal as well as coordination number
(c) the two complexes differ in their coordination number
(d) the two complexes differ in their coordination geometry
100. Consider the following reaction: $\cap T$ $\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{2++}+\mathrm{Cl}^{2}$

The above reaction inyolves
(a) substitution
(c) oxidation

(b) substitution and reduction
(d) substitution and oxidation
101. Identify the acids in the following two reactions:
$\mathrm{NOF}+\mathrm{ClF}_{3}=\mathrm{NO}+\mathrm{ClF}_{4}$
$\mathrm{XeO}_{3}+\mathrm{OH}^{-}=\mathrm{HXeO}_{4}$
(a) ClF_{3} and XeO_{3}
(c) NOF and OH
(b) ClF_{3} and OH
(d) NOF and XeO_{3}
102. What are the formal oxidation states of the iron atoms labeled (A) and (B) in the compound $\mathrm{Fe}_{4}{ }^{(\mathrm{A})}\left[\mathrm{Fe}^{(\mathrm{B})}(\mathrm{CN})_{6}\right]_{3}$?
(a) $\mathrm{Fe}^{(\mathrm{A})}, 2+$ and $\mathrm{Fe}^{(\mathrm{B})}, 3+$
(b) $\mathrm{Fe}^{(\mathrm{A})}, 2+$ and $\mathrm{Fe}^{(\mathrm{B})}, 4+$
(c) $\mathrm{Fe}^{(\mathrm{A})}, 3+$ and $\mathrm{Fe}^{(\mathrm{B})}, 3+$
(d) $\mathrm{Fe}^{(\mathrm{A})}, 3+$ and $\mathrm{Fe}^{(\mathrm{B})}, 2+$
103. The magnetic moment of $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ is zero and that of $\mathrm{Mn}(\mathrm{CN})_{6}{ }^{3-}$ is 2.9 BM . From this is may be concluded that
(a) both ions are high spin
(b) both ions are low spin
(c) $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$ is low spin, $\mathrm{Mn}(\mathrm{CN})_{6}^{3-}$ is high spin
(d) $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}$ is diamagnetic, $\mathrm{Mn}(\mathrm{CN})_{6}^{3-}$ is high spin
104. Which among the following compounds/ions are diamagnetic?
$\mathrm{CuCl}_{6}{ }^{2-} ; \mathrm{Cu}(\mathrm{SCN}) ; \mathrm{CoCl}_{4}{ }^{2-} ; \mathrm{Ni}(\mathrm{CO})_{4} ; \mathrm{PdCl}_{4}{ }^{2-}$
(a) $\mathrm{CoCl}_{4}{ }^{2-}$ and $\mathrm{PdCl}_{4}{ }^{2-}$
(b) $\mathrm{CuCl}_{6}{ }^{4-}, \mathrm{Cu}(\mathrm{SCN})$ and $\mathrm{Ni}(\mathrm{CO})_{4}$
(c) $\mathrm{Cu}(\mathrm{SCN})$ and $\mathrm{Ni}(\mathrm{CO})$
(d) $\mathrm{Cu}(\mathrm{SCN}), \mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{PdCl}_{4}{ }^{2-}$
105. Which one is an example of a 'sandwich' compound?
(a) $\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$
(c) $\mathrm{Cr}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
(b) $\mathrm{Cr}(\mathrm{CO})_{6}$
(d) $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2}\right]\left[\mathrm{PtCl}_{4}\right]$
106. Which one, among the listed ions, will have the highest magnetic moment?
(a) $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$
(b) $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}$
(c) $\mathrm{MnCl}_{4}{ }^{2-}$
(d) $\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}^{2+}$
107. Which of the following shows the correct relationship between the atomic radius (r) of Cu, Ag and Au ?
(a) ${ }^{\mathrm{r}} \mathrm{Cu}<{ }^{\mathrm{r}} \mathrm{Ag}<{ }^{\mathrm{r}} \mathrm{Au}$
(b) ${ }^{\mathrm{r}} \mathrm{Cu}<{ }^{\mathrm{r}} \mathrm{Ag}<{ }^{\mathrm{r}} \mathrm{Au}$
(c) ${ }^{\mathrm{r}} \mathrm{Cu}<{ }^{\mathrm{r}} \mathrm{Ag} \ll{ }^{\mathrm{r}} \mathrm{Au}$

(d) ${ }^{r} \mathrm{Cu}>{ }^{\mathrm{r}} \mathrm{Ag}>{ }^{\mathrm{r}} \mathrm{Au}$
108. Which of the following molecules/ions have planar structures?
(i) NH_{3}
(ii) $\mathrm{SO}_{4}{ }^{2-}$
(iii) $\mathrm{CO}_{3}{ }^{2-}$
(iv) BF_{3}
(a) All four
(b) ii and iii
(c) iii and iv
(d) Only iv
109. Which of the following are paramagnetic compounds?
(i) Oxygen
(ii) Copper sulphate
(iii) Carbon monoxide
(iv) Nitric oxide
(v) Ozone
(a) i, ii, iii
(b) i, ii, iv
(c) ii, iii, v
(d) i, iv, v
110. Complete the sentence: An octahedral complex, ${M A_{4}}_{4} B_{2}$ \qquad -.
(a) will have two constitutional isomers
(b) will have two stereoisomers
(c) cannot show isomerism
(d) will be optically active
111. Which two of the following molecules/ions have planar structures?
(i) XeF_{4}
(ii) ClO_{4}^{-}
(a) i and iii
(b) i and ii
(iii) PtCl_{4}^{2-}
(iv) MnO_{4}^{-}
(c) ii andiil
(d) ii and iv
112. In qualitative analysis, Ag is detected in the first group, while Pb is detected in both first and second groups. This is because
(a) AgCl is much more soluble than PbCl_{2}
(b) AgCl is much less soluble than PbCl_{2}
(c) the solubilities of the chlorides are same, but traces of PbS are easily seen due to its black colour
(d) AgS is soluble, but PbS is insoluble
113. Three examples of molecules/ions having linear geometry may be given as
(a) $\mathrm{CO}_{2}, \mathrm{NCS}^{-}$and NO_{2}^{+}
 \rightarrow / A_{A-A}
(b) $\mathrm{CO}_{2}, \mathrm{NCS}^{-}$and NO_{2}
(c) $\mathrm{NO}_{2}, \mathrm{~N}_{3}^{-}$and NCS^{-}
(d) $\mathrm{ClO}_{2}, \mathrm{CO}_{2}$ and NO_{2}^{+}
114. The average of 64 results is how many more times reliable than the average of 4 results?
(a) 2
(b) 4
(c) 8
(d) 16
115. Which of the following statements is true?
(a) The variance is the square root of the standard deviation
(b) Precise values are always accurate
(c) The numbers 0.02040 contains only four significant figures
(d) Two of the above are true
116. Titrator A obtains a mean value of 12.96% and a standard deviation of 0.05 for the purity of a sample. Titrator B obtains corresponding values of 13.12% and 0.08 . The true percent purity is 13.08 . Compared to titrator B, titrator A is
(a) less accurate but more precise
(b) more accurate and more precise
(c) less accurate and less precise
(d) more accurate but less precise
117. Which of the following titrations (0.10 M solution) will give the largest change in pH at the end point?
(a) Benzoic acid and NaOH
(b) Formic acid and NaOH
(c) Pyridine with HCl (d) Monochloroacetic acid with NaOH
118. Which is the strongest conjugate base?
(a) OAc^{-}
(b) F
(c) NO_{2}
(d) OCl^{-}
119. Which of these statements is ture?
(a) An aprotic solvent has acidic properties
(b) The titration reaction is more complete the smaller the autoprotolysis constant
(c) Dissociation into ions is necessary for successful acid-base titrations
(d) A low dielectric constant is desirable for amphiprotic solvents
120. A precipitate of $\mathrm{Fe}(\mathrm{OH})_{3}$ is contaminated with $\mathrm{Mg}(\mathrm{OH})_{2}$. The best way to get rid of the impurity is
(a) washing
(b) digestion
(c) ignition
(d) reprecipitation
121. Line spectra are emitted by $A B A$
(a) hot solids
(b) excited polyatomic molecules
(c) molecules in the ground electronic state
(d) excited atoms and monoatomic ions
122. The hydrogen or deuterium discharge tube can be used as a source of continuous ultraviolet radiation for spectrophotometers because of
(a) the characteristics of chopper-modulated radiation
(b) pressure broadening of hydrogen or deuterium emission lines
(c) the great sensitivity of photomultiplier tubes
(d) the narrow band pass of modern grating monochromators
123. In chromatography, a substance for which the distribution coefficient, k is zero may be used to estimate
(a) the volume within the column occupied by the packing material
(b) the total volume of the column
(c) the volume within the pores of the packing material
(d) the volume within the column available in the mobile phase
124. The separation factor, S, in chromatography depends upon
(a) the length of the column
(b) the square root of the length of the column
(c) the natures of the stationary liquid phase
(d) the number of theoretical plates in the column
125. A neutral molecule such as ethanol or sugar which has found its way into the pores of a typical anion-exchange resin can be eliminated
(a) only by replacement with a cation
(b) only by replacement with a anion
(c) only if replaced by another organic molecule on a one-for-one/exchange basis
(d) by flushing out with water
126. Which of the following statements is false in normal phase adsorption?
(a) The more polar a compound, the more strongly it will be adsorbed from a solution
(b) A high molecular weight favours adsorption, other factors being equal
(c) The more polar the solvent, the stronger the adsorption of the solute
(d) The adsorption isotherm is usually non-linear
127. The best measure of the quantity of a solute in liquid chromatography is
(a) the height of the elution band
(b) the area of the elution band
(c) baseline width of the elution band
(d) the retention volume
128. Which of the following would be the fastest way to decide which adsorbent and what solvent system to use for a large-scale chromatographic separation of an organic reaction product from materials found in side reactions?
(a) Paper chromatography
(b) Affinity chromatography
(c) TLC
(d) Adsorption chromatography with gradient elution
129. To deionize tap water by ion exchange for laboratory use, the best approach employs
(a) a column containing a strong acid cation exchanger in the hydrogen form
(b) a column containing a strong base cation exchanger in the hydrogen form
(c) a mixed bed column containing a strong acid cation exchanger in the solution form and a strong-base anion exchanger in the chloride form
(d) a mixed bed column containing a strong acid cation exchanger in the hydrogen form and a strong - base anion exchanger in the hydroxyl form
130. Which of the following is used in archaeological studies?
(a) Carbon
(b) Uranium
(c) Radium
(d) Phosphorus
131. Radioactive iodine is being used to diagnose the disease of
(a) bones
(b) blood cancer
(c) kidneys
(d) thyroid
132. The half-life period of a radioactive material can be determined with the help of
(a) Wilson Cloud Chamber (b) Geiger-Muller Counter
(c) Mass specrometer (d) All of the above 1
133. Graphite is used in nuclear reactors
(a) as a lubricant
(b) as a fuel
(c) for lining the inside of the reactor as an insulator
(d) for reducing the velocity of neutrons
134. Pure water does not conduct electricity because of
(a) has low boiling point
(b) is almost unionized
(c) is neutral
(d) is readily decomposed
135. The molar conductivity of a strong electrolyte
(a) increases on dilution
(b) does not change considerably on dilution
(c) decreases on dilution
(d) depends on density
136. Electrostatic precipitators are used as pollution control device for the separation of
(a) SO_{2}
(b) NO_{x}
(c) hydrocarbons
(d) suspended particulate matter
137. Which of the following is responsible for ozone layer depletion?
(a) Ozone
(b) Aerosol
(c) Chlorofluorocarbons (CFC)
(d) Smog
138. Which of the following is a non-biodegradable organic water pollutant?
(a) Proteins
(b) Fats
(c) Carbohydrates
(d) Pesticides
139. Which of the following is very effective for isolating, separating and identifying small quantities of substances?
(a) Potentiometry
(b) Chromatography
(c) Salvent extraction (d) Conducotmetry
140. Greenhouse effect causês
(a) rise in temperature of the earth
(b) continuous rainfall
(c) lowering in temperature of the earth
(d) Conductometry
141. Which of the following is the correct structure of oxine?
(a)

(b)

(c)

(d)

142. One mole of potassium bromate in bromate-bromide reaction produces
(a) one mole Br_{2}
(b) two moles Br_{2}
(c) three moles Br_{2}
(d) four moles Br_{2}
143. Phenolphthalein is used as an indicator when transition pH is in the range of
(a) 1-4
(b) 4-6
(c) 8-10
(d) 10-12
144. Gases responsible for acid rains are
(a) hydrocarbon and CO
(b) NO_{x} and SO_{x}
(c) CO_{x} and NO_{x}
(d) CO and CO_{2}
145. Which of the following is the most toxic?
(a) $\mathrm{CH}_{3} \mathrm{Hg}^{+}$
(b) HgCl_{2}
(c) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
(d) Hg metal
146. How many moles of benzoic acid $(122.1 \mathrm{~g} / \mathrm{mol})$ are contained in 2.00 g of pure benzoic acid?
(a) 0.164 mol
(b) 0.008 mol
(c) 0.082 mol
(d) 0.0164 mol
147. How many potential sites are there in an EDTA molecule for bonding metal ion?
(a) Four
(b) Three
(c) Six
(d) Two
148. Water hardness is determined by EDTA titration after the sample is buffered to pH
(a) 4
(b) 2
(c) 6
(d) 10
149. What minimum distribution coefficient is needed to permit removal of 99% of a solute from 50.0 mL of water with two 25.0 mL extraction with toluene?
(a) 18.0
(b) 09.0
(c) 27.0
(d) 36.0
150. The distribution coefficient for iodine between an organic solvent and $\mathrm{H}_{2} \mathrm{O}$ is 85 . The concentration of I_{2} remaining in the aqueous layer of the extraction of 50.0 mL of $1.00 \times 10^{-3} \mathrm{M} \mathrm{I}_{2}$ with 50.0 mL of the organic solvent is
(a) 1.16×10^{-6}
(b) 5.28×10
(c) 5.29×10^{-10}
(d) 1.16×10^{-7}

