

# **DU M.SC. ENTRANCE CHEMISTRY 2016**

| 1. | Which of the following is the correct order of increasing acidity sequence?        |                                                                                   |  |  |
|----|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
|    | (a) HI < HBr < HCl < HF                                                            | (b) HI < HCl < HBr < HF                                                           |  |  |
|    | (c) $HF < HCl < HBr < HI$                                                          | (d) $HF \approx HBr < HCl < HI$                                                   |  |  |
| 2. | Which of the following statement is                                                | correct?                                                                          |  |  |
|    | (a) only one bond length is observed in both $PF_5$ and $SF_6$                     |                                                                                   |  |  |
|    | (b) two different bond lengths are o                                               | observed in both $PF_5$ and $SF_6$                                                |  |  |
|    | (c) only the equatorial bond lengths                                               | are uniform in $\operatorname{PF}_5$ and the axial bond lengths in                |  |  |
|    | SF <sub>6</sub>                                                                    |                                                                                   |  |  |
|    | (d) two different bond lengths are o                                               | observed in $PF_5$ and only one bond length in $SF_6$                             |  |  |
| 3. | When $^{23}_{11}$ Na nuclide is bombarded v                                        | vith alpha particles the resultant products will be                               |  |  |
|    | (a) $^{24}_{12}$ Mg and $^{2}_{1}$ H (b) $^{26}_{12}$ Mg and                       | $^{1}_{1}H$ (c) $^{26}_{11}Mg$ and $^{1}_{0}n$ (d) $^{25}_{12}Na$ and $^{1}_{1}H$ |  |  |
| 4. | The magnetic moments of the lanthanoid compounds arise from                        |                                                                                   |  |  |
|    | (a) spin-only angular momentum                                                     |                                                                                   |  |  |
|    | (b) only from orbital angular momentum                                             |                                                                                   |  |  |
|    | (c) both from spin and orbital angular momentum (d) all of the above               |                                                                                   |  |  |
|    | (d) all of the above                                                               | ATA, INI                                                                          |  |  |
| 5. | Which is the best way of identifying a given colourless liquid to be water or not? |                                                                                   |  |  |
|    | (a) by tasting                                                                     | (b) by adding methyl orange                                                       |  |  |
|    | (c) by smelling                                                                    | (d) by adding a pinch of copper sulphate                                          |  |  |
| 6. | The addition of KI and CuSO <sub>4</sub> gives                                     |                                                                                   |  |  |
|    | (a) CuI <sub>2</sub> and K <sub>2</sub> SO <sub>4</sub>                            | (b) $Cu_2I_2$ and $K_2SO_4$                                                       |  |  |
|    | (c) $K_2SO_4$ , $CuI_2$ and $I_2$                                                  | (d) $K_2SO_4$ , $Cu_2I_2$ and $I_2$                                               |  |  |
| 7. | In diborane,                                                                       |                                                                                   |  |  |

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)

North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)

Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

\*\* +91 98369 24983 \*\* +91 85829 79309





(a) there exists a direct bond between boron and boron

### **ASPIRATION ACADEMY**

### M.Sc. Entrance | DU 2016

|            | (b) all the atoms are in one plane                                |                                           |                                           |                                           |  |
|------------|-------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--|
|            | (c) the number of electrons in B-H-B is formed by two electrons   |                                           |                                           |                                           |  |
|            | (d) the number of electrons in B-H-B is formed by three electrons |                                           |                                           |                                           |  |
| 8.         | Which of the following                                            | ng sulphides is not bla                   | ck?                                       |                                           |  |
|            | (a) ZnS                                                           | (b) NiS                                   | (c) CoS                                   | (d) CuS                                   |  |
| 9.         | For a transition meta                                             | al with seven electrons                   | the effective magnetic                    | c moment will be                          |  |
|            | (a) 3.16 BM                                                       | (b) 3.87 BM                               | (c) 15 BM                                 | (d) 5.92 BM                               |  |
| 10.        | Schottky defects form                                             | n in a crystal                            | A                                         |                                           |  |
|            | (a) when unequal nu                                               | mber of cations and a                     | nions are missing from                    | the lattice                               |  |
|            | (b) when equal num                                                | oer of cations and anio                   | ons are missing from th                   | ne lattice                                |  |
|            | (c) when cations leav                                             | e its normal positions                    | s in the lattice and mov                  | re in to interstitial sites               |  |
|            | (d) when the density                                              | of the crystal is increa                  | ased                                      |                                           |  |
| 11.        | Decreasing order of                                               | the dipole moments is                     |                                           |                                           |  |
|            | (a) $AsH_3 > BiH_3 > Sl$                                          | $OH_3 > NH_3 > PH_3$                      | (b) $BiH_3 > SbH_3 > A$                   | $SH_3 > NH_3 > PH_3$                      |  |
|            | (c) $NH_3 > PH_3 > AsH$                                           | $H_3 > SbH_3 > BiH_3$                     | (d) $PH_3 > NH_3 > Asl$                   | $H_3 > SbH_3 > BiH_3$                     |  |
| 12.        | The metal ions respo                                              | ensible for $N_2$ fixation                | by the enzyme nitroge                     | nase are                                  |  |
|            | (a) Co and Fe                                                     | (b) Cu and Fe                             | (c) W and Cu                              | (d) Fe and Mo                             |  |
| 13.        | The speed of the elec                                             | etron is $1.2{	imes}10^6~{ m ms}^{-1}$    | and the mass of the el                    | ectron is                                 |  |
|            | $9.1 \times 10^{-31}$ Kg. Its de Broglie wavelength is            |                                           |                                           |                                           |  |
|            | (a) $1.46 \times 10^{-10}$ m                                      | (b) $6.07 \times 10^{-15}$ m              | (c) $6.907 \times 10^{-10}$ m             | (d) $6.071 \times 10^{-10}$ m             |  |
| 14.        | A radioactive element is                                          | nt lost 50% activity in 3                 | 3 days and 20 hrs. The                    | decay constant of the                     |  |
|            | (a) $7.53 \times 10^{-3} \text{ hr}^{-1}$                         | (b) $5.73 \times 10^{-3} \text{ hr}^{-1}$ | (c) $7.35 \times 10^{-2} \text{ hr}^{-1}$ | (d) $9.73 \times 10^{-3} \text{ hr}^{-1}$ |  |
| <b>15.</b> | Which of the following                                            | ng has a higher crystal                   | field splitting energy                    | $(\Delta_0)$                              |  |
|            |                                                                   |                                           |                                           | · -/                                      |  |
|            |                                                                   |                                           |                                           |                                           |  |





## M.Sc. Entrance

|     | (a) $\left[ \text{Co} \left( \text{CN} \right)_6 \right]^{3-}$                        | (b) $\left[ \text{Co} \left( \text{NH}_3 \right)_6 \right]^{3+}$ | (c) $\left[ \text{CoF}_6 \right]^{3-}$             | (d) $\left[ \text{Co} \left( \text{H}_2 \text{O} \right)_6 \right]^{3+}$                           |
|-----|---------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 16. | The pH and pOH of 0                                                                   | 0.1 M H <sub>2</sub> SO <sub>4</sub> are                         |                                                    |                                                                                                    |
|     | (a) 0.1, 13.9                                                                         | (b) 0.3, 13.7                                                    | (c) 0.7, 13.3                                      | (d) 1.0, 13.0                                                                                      |
| 17. | The symmetry posses $90^{\circ}$ is due to the                                        | essed by a cubic crysta                                          | l system, all axes being                           | g equal and all angles at                                                                          |
|     | (a) nine planes of sy                                                                 | mmetry                                                           |                                                    |                                                                                                    |
|     | (b) six two-fold axes                                                                 | $(C_2)$ of symmetry                                              |                                                    |                                                                                                    |
|     | (c) three four-fold as                                                                | $\operatorname{kes}\left(C_{4}\right)$ of symmetry               | IAC                                                |                                                                                                    |
|     | (d) four three-fold as                                                                | $xes(C_3)$ of symmetry                                           |                                                    |                                                                                                    |
| 18. | The Zieger-Natta cat                                                                  | alysts used for the pol                                          | ymerization of olefin is                           | s                                                                                                  |
|     | (a) $TiO_2$ and $Al_2O_3$                                                             |                                                                  | (b) $TiCl_3$ and $Al(C_2l)$                        | $\left(H_{5}\right)_{3}$                                                                           |
|     | (c) $TiCl_4$ and $ZnO$                                                                |                                                                  | (d) PdCl <sub>4</sub>                              |                                                                                                    |
| 19. | A delta $(\delta)$ bond for                                                           | mation is known in                                               |                                                    |                                                                                                    |
|     | (a) $Na[Re(CO)_5]$                                                                    | (b) ReO <sub>3</sub>                                             | (c) $\left[ Re_2 Cl_8 \right]^{2}$                 | (d) ReOCl <sub>4</sub>                                                                             |
| 20. | _                                                                                     |                                                                  | increase of the two tra<br>n metal ions with a cor | ns M-L bond distances<br>ofiguration of                                                            |
|     | (a) d <sup>10</sup>                                                                   | (b) d <sup>7</sup>                                               | (c) d <sup>2</sup>                                 | (d) d <sup>9</sup>                                                                                 |
| 21. | The increasing order                                                                  |                                                                  | -1                                                 | mong the isoelectronic                                                                             |
|     | complexes will be                                                                     |                                                                  |                                                    |                                                                                                    |
|     | (a) $\left[V(CO)_{6}\right]^{-} < Cr$                                                 | $(CO)_6 < [Mn(CO)_6]^+$                                          | (b) $\left[V(CO)_{6}\right]^{-} < \left[M\right]$  | $\ln(CO)_6^{-1} < \operatorname{Cr}(CO)_6^{-1}$                                                    |
|     | (c) $\operatorname{Cr}(\operatorname{CO})_6 < [\operatorname{V}(\operatorname{C})]_6$ | $0)_{6}^{-} < \left[ Mn(C0)_{6}^{-} \right]^{+}$                 | $(d) \left[ Mn(CO)_6 \right]^+ < C$                | $\operatorname{Cr}(\operatorname{CO})_6 < \left[\operatorname{V}(\operatorname{CO})_6\right]^{-1}$ |
|     |                                                                                       |                                                                  |                                                    |                                                                                                    |

In methane which of the following symmetry operations will resulting in a  $\ensuremath{\text{C}}_2$ 

(b) two  $S_4$  operations

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

**22**.

symmetry operation?

(a) one  $S_3$  and one  $S_1$  operations

**\*** +91 98369 24983

**\*** +91 85829 79309



### M.Sc. Entrance | DU 2016

|     | (c) one $C_3$ and one $C_1$ operation                             | (d) One $C_3$ and E operations                                                            |  |  |  |
|-----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| 23. | The poisoning in the Minamata Bay in Japan was due to             |                                                                                           |  |  |  |
|     | (a) compounds of lead                                             | (b) methylmercury compounds                                                               |  |  |  |
|     | (c) arsenic                                                       | (d) uranium                                                                               |  |  |  |
| 24. | Resistance of solid $C_{60}$ disappears when for                  | rmed compounds with                                                                       |  |  |  |
|     | (a) K, Rb, Cs (b) S, Se, Te                                       | (c) Zn, Cd, Hg (d) Ti, Y, Sc                                                              |  |  |  |
| 25. | Ground state for d <sup>4</sup> electronic configuration          | on is                                                                                     |  |  |  |
|     | (a) <sup>5</sup> F (b) <sup>5</sup> D                             | (c) $^2$ D (d) $^3$ F                                                                     |  |  |  |
| 26. | Which of the following elements has a moran oxidation state of I? | re stable oxidation state of III as compared to                                           |  |  |  |
|     | (a) Al (b) Ga                                                     | (c) Tl                                                                                    |  |  |  |
| 27. | The structure of ICl <sub>2</sub> is                              | 77 115 1                                                                                  |  |  |  |
|     | (a) linear (b) tetrahedral                                        | (c) trigonal bipyramid (d) octahedral                                                     |  |  |  |
| 28. | Which of the following materials show Me                          | issner effect?                                                                            |  |  |  |
|     | (a) metallic and paramagnetic                                     | (b) superconducting and diamagnetic (c)                                                   |  |  |  |
|     | onducting and diamagnetic                                         | (d) antiferromagnetic and isulating                                                       |  |  |  |
| 29. | The correct increasing order of Trans effect                      |                                                                                           |  |  |  |
|     | (a) $OH^- < Br^- < SCN^- < PR_3$                                  | (b) $OH^- < Br^- < PR_3 < SCN^-$                                                          |  |  |  |
|     | (c) $Br^- < PR_3 < OH^- < SCN^-$                                  | (d) $Br^- < OH^- < SCN^- < PR_3$                                                          |  |  |  |
| 30. | -                                                                 | an iron ore by volumetric method gave the<br>The standard, average and probable deviation |  |  |  |
|     | (a) 0.047, 0.031, 0.036                                           | (b) 0.031. 0.036, 0.047                                                                   |  |  |  |
|     | (c) 0.047, 0.036, 0.031                                           | (d) 0.36, 0.047, 0.031                                                                    |  |  |  |
| 31. | The IUPAC name of the following compour                           | nd is                                                                                     |  |  |  |



- (a) 4, 4-dimethyl-5-ethyloctane
- (b) 4-ethyl-5, 5-dimethyloctabe
- (c) 2-methyl-2, 3-dipropylpentane
- (d) 5-ethyl-4, 4-dimethyloctane
- **32.** In Diels-Alder reaction which of the following will react most slowly with tetracyanoethene.

**33.** In the following reaction which will be the preferred product?

$$(a) \qquad (b) \qquad (c) \qquad (d) \qquad (d)$$

- **34.** The general molecular formula of sesquiterpenoids is
  - (a)  $C_{10}H_{16}$
- b) C<sub>10</sub>H<sub>22</sub>
- (c)  $C_{15}H_{2}$
- (d) C<sub>15</sub>H<sub>32</sub>

- **35.** Which of the following is not true?
  - (a) sun rays contains vitamin D
  - (b) sun's ultraviolet rays assist in the synthesis of Vitamin D from a precursor present in our skin
  - (c) vitamin D deficiency could develop brittle bones
  - (d) vitamin D can be ingested through diet or supplements
- **36.** Pick out the incorrect match?

(a) Sanger reagent 1-fluoro-2, 4-dinitrobenzene

(b) Edman reagent phenyl isothiocyanate

**South Kolkata:** 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) **North Kolkata:** 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) **Website:** www.aspirationacademy.in | Email: info@aspirationacademy.in |

**\*** +91 98369 24983

**\*** +91 85829 79309





#### M.Sc. Entrance | DU 2016

- (c) Strecker amino acid synthesis i. aldehyde + HCN; ii. hydrolysis
- (d) Merrifield peptide synthesis polystyrene resin
- **37.** Which of the following structures will not have detergent properties?
  - (a)  $CH_3(CH_2)_{11}CH_2C-OCH_3$
- (b)  $CH_3(CH_2)_{11}CH_2CH_2O$ -glucose
- (c)  $CH_3(CH_2)_{11}CH_2CH_2OSO_3H$
- (d)  $CH_3(CH_2)_{11}CH_2CH_2N(CH_3)_3Cl^{-1}$

- **38.** Aspirin is
  - (a) salicylic acid

- (b) 2-acetoxybenzoic acid
- (c) methyl salicylate (d) 2-acetoxy benzaldehyde
- 39. The major organic product of aromatic nitration of 1-methyl naphthalene is

(a) 
$$(b)$$
  $(c)$   $(d)$   $(d)$   $(d)$ 

- **40.** Which of the following aldehydes can undergo self condensation?
  - (a) PhCHO

(b) HCHO

(c)  $(CH_3)_3$  CCHO

- (d) (CH<sub>3</sub>CH<sub>2</sub>)<sub>2</sub> CHCHO
- **41.** Cyclamate, an artificial sweetner can be prepared by the reaction of cyclohexylamine and chlorosulfonic acid, followed by the treatment with sodium hydroxide. Which is the structure of this cyclamate?

(a) 
$$\stackrel{\stackrel{\text{H}}{\parallel}}{\stackrel{\parallel}{\parallel}}_{N-S-O^-} NA^+$$

**42.** Which one of the following is un-reactive to NaBH<sub>4</sub> reduction?



#### M.Sc. Entrance

|                | o<br>L                               | Î                        |         |
|----------------|--------------------------------------|--------------------------|---------|
| CH₃−CHO<br>(a) | (b) H <sub>3</sub> C CH <sub>3</sub> | (c) H <sub>3</sub> C OMe | (d) CHO |

**43**. The functional group in the following compound is

- (a) hemiacetal
  - (b) hemiketal
- (c) acetal
- (d) ketal

44. The octane rating of gasoline refers to its

- (a) percentage  $C_8H_{18}$  in gasoline
- (b) radiation dose
- (c) percentage of unsaturated hydrocarbons
- (d) ability to resist engine kncoking

The compound CFCl<sub>3</sub> is used as a/an 45.

- (a) enzyme
- (b) anesthetic
- (c) gaseous fuel

46. An increase in the amount of particulate matter (dust and smoke) in the atmosphere may result in cooler world temperature because

- (a) more sunlight is absorbed by Earth
- (b) more IR is emitted into space
- (c) the dust reflects solar radiation
- (d) dust reacts with ozone in an exothermic reaction

47. Polacrylonitrile, characterized by the repeating units made from which of the following monomers?

- (a) CH<sub>2</sub>CH<sub>2</sub>CN
- (b)  $HOCH_2CH_2CH_3$  (c)  $CH_3CH = CHCN$  (d)  $CH_2 = CHCN$

48. Which of the following compounds could not be used to prepare a Grignard reagent?

(c) HOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br (d) CH<sub>3</sub>C = CCH<sub>2</sub>CH<sub>2</sub>I

49. Identify the correct order for placing the following compounds in increasing oxidation state.

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

**\*** +91 98369 24983









### M.Sc. Entrance

 $CH_3CH_2OH$ ,  $CH_3COOH$ ,  $CO_2$ ,  $CH_2 = CH_2$ 

(a) 
$$CH_2 = CH_2 < CH_3CH_2OH < CH_3COOH < CO_2$$

(b) 
$$CH_2 = CH_2 = CH_3CH_2OH < CH_3COOH < CO_2$$

(c) 
$$CH_3CH_2OH < CH_2 = CH_2 < CH_3COOH < CO_2$$

(d) 
$$CH_2 = CH_2 < CH_3CH_2OH < CO_2 < CH_3COOH$$

**50**. Which of the following alkenes will react most readily with HBr?

$$CH_3CH_2CH = CH_2$$
  $CH_2 = CH_2$   $(CH_3)_2C = CHCH$ 

(a) 
$$(CH_3)_2 C = CHCH_3$$
 (b)  $CH_2 = CH_2$ 

(c) 
$$CH_3CH_2CH \neq CH_2$$
 (d) no difference in reactivity

In Williamson synthesis, ethers are produced by reacting an **51**.

- (a) alcohol with a metal

(b) an alkyl halide with alkoxide

(c) alkoxide with a metal

(d) an aldehyde with alkyl halide

Which reaction produces ethyl alcohol as one of the principal products? **52**.

- (a) an esterification reaction
- (b) a neutralization reaction
- (c) a dehydration reaction
- (d) a fermentation reaction

(d) 4

The maximum number of hydrogen bonds that a molecule of water can have is **53**.

(a) 1 The major product of dehydration of neopentyl alcohol is

(a) 
$$(CH_3)_2 C = CHCH_3$$

**54**.

(b) 
$$(CH_3)_3C-CHO$$

(c) 
$$H_2C = CHCH(CH_3)_2$$

(d) None of the above

**55.** Arrange the following compounds in order of increasing intensity of infrared absorption by the double bond (least intense first) assuming the same concentration and other conditions.

(I) 
$$^{\text{H}_3\text{C}}_{-\text{C}}^{\text{C}}_{-\text{CH}_2\text{CH}_3}^{\text{O}}$$
 (II)  $(\text{CH}_3)_2\text{C} = \text{C}(\text{CH}_3)_2$  (III)  $\text{CH}_3\text{CH}_2\text{CH} = \text{CH}_2$ 



# M.Sc. Entrance | DU 2016

|            | (a) I < II < III                                                                       | (b) II < III < I                                                        | (c) III < II < I                        | (d) II < I < III                        |  |  |
|------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--|--|
| 56.        | <b>56.</b> List the following compounds in order of decreasing acidity                 |                                                                         |                                         |                                         |  |  |
|            | (I) CH <sub>2</sub> CH <sub>2</sub> OH                                                 | (II) CH <sub>3</sub> CH <sub>2</sub> OH                                 | (III) CH <sub>3</sub> CHOH              | (IV) CH <sub>2</sub> CH <sub>2</sub> OH |  |  |
|            | F                                                                                      |                                                                         | F                                       | Cl                                      |  |  |
|            | (a) I > II > III > IV                                                                  | (b) III > IV > I > II                                                   | (c) III > I > IV > II                   | (d) $II > IV > I > III$                 |  |  |
| 57.        | A protein that has be                                                                  | en reversibly denatu                                                    | rated has                               |                                         |  |  |
|            | (a) temporarily lost                                                                   | (a) temporarily lost part or all of its secondary of tertiary structure |                                         |                                         |  |  |
|            | (b) temporarily lost                                                                   | part or all of its prima                                                | ry structure                            |                                         |  |  |
|            | (c) temporarily lost                                                                   | ts amino acid residue                                                   | s                                       |                                         |  |  |
|            | (d) temporarily lost                                                                   | the hydrogen bonding                                                    | g between nitrogenous                   | bases                                   |  |  |
| <b>58.</b> | How many moles of                                                                      | $\mathrm{BH}_3$ are needed to re                                        | act with 2 moles of 1-p                 | entene?                                 |  |  |
|            | (a) 2 moles                                                                            | (b) 1 mole                                                              | (c) 2/3 mole                            | (d) 3/2 moles                           |  |  |
| 59.        | (+) Mandelic acid h                                                                    | as a specific rotation (                                                | of $+158^{\circ}$ . What would          | be the observed specific                |  |  |
|            | rotation of 25% (–)-mandelic acid and 75% (+)-mandelic acid?                           |                                                                         |                                         |                                         |  |  |
|            | (a) +79°                                                                               | (b) 0                                                                   | (c) -79°                                | (d) +39.5°                              |  |  |
| 60.        | How many peaks will be observed in the 1 H NMR spectrum of 1-Chloro-4- methoxybenzene? |                                                                         |                                         |                                         |  |  |
|            | (a) 2                                                                                  | (b)3/KAT/                                                               | (c) 5                                   | (d) 1                                   |  |  |
| <b>61.</b> | In a tetragonal cryst                                                                  | al NAT                                                                  | 4, 114                                  |                                         |  |  |
|            | (a) $a = b = c$ , $\alpha = \beta =$                                                   | =90°≠γ                                                                  | (b) $a = b \neq c, \alpha = \beta =$    | - γ = 90°                               |  |  |
|            | (c) $a \neq b \neq c$ , $\alpha = \beta =$                                             | -γ=90°                                                                  | (d) $a = b \neq c$ , $\alpha = \beta =$ | $=120^{\circ}$ , $\gamma=90^{\circ}$    |  |  |
| 62.        | Increasing the tempo                                                                   | erature of an aqueous                                                   | solution causes                         |                                         |  |  |
|            | (a) decrease in mola                                                                   | lity                                                                    | (b) decrease in mola                    | rity                                    |  |  |
|            | (c) decrease in mole                                                                   | fraction                                                                | (d) increase in molar                   | rity                                    |  |  |
| 63.        | The depression in fr                                                                   | eezing point for 1 M U                                                  | rea, 1 M glucose and 1                  | M NaCl are in the ratio                 |  |  |
|            | (a) 3:2:2                                                                              | (b) 1:2:3                                                               | (c) 1:1:2                               | (d) None of these                       |  |  |

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)

North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)

Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

★ +91 98369 24983★ +91 85829 79309





# M.Sc. Entrance | DU 2016

| 64.     | The van't Hoff factor i for a compound which undergoes dissociation in one solvent and association in other solvent is respectively |                                                  |                                            |                                                                |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------------------------------|
|         | (a) > 1 and > 1                                                                                                                     | (b) < 1 and > 1                                  | (c) < 1 and < 1                            | (d) > 1  and  < 1                                              |
| 65.     |                                                                                                                                     | •                                                |                                            | ) 1% (mass/volume) NaCl<br>.5% (Mass/volume) NaCl              |
| It will | (a) It will shrink in swell in both (i) and                                                                                         |                                                  | (b) It will swell in (d) It will shrink in | (i) and shrink in (ii) (c) n both (i) and (ii)                 |
| 66.     | The boiling point o                                                                                                                 | f carbon tetrachloride                           | is 77°C and the heat                       | of vaporization is 31 kJ                                       |
|         | $mol^{-1}$ . The vapour                                                                                                             | pressure of Carbon to                            | etrachloride at 25°C                       | will be                                                        |
|         | (a) ~ 0.156 atm                                                                                                                     | (b) ~ 1.21 atm                                   | (c) ~ 0.011 atm                            | (d) ~ 2.1 atm                                                  |
| 67.     | The osmotic pressu                                                                                                                  | ire of a 0.1M monobas                            | sic acid having a pH of                    | 2 at 25°C is                                                   |
|         | (a) ~ 5.38 atm                                                                                                                      | (b) ~ 1.34 atm                                   | (c) ~ 0.882 atm                            | (d) ~ 2.69 atm                                                 |
| 68.     | constant for a gas i                                                                                                                |                                                  | $55	imes10^7$ torr and the p               | nry's law. If the Henry's<br>artial pressure of the gas<br>ter |
|         | (a) $\sim 3.6 \times 10^{-7}$ mg                                                                                                    | ol (b) $\sim 2.5 \times 10^{-5} \text{ m}$       | ol (c) $\sim 2.0 \times 10^{-4}$ m         | ol (d) $\sim 1.2 \times 10^{-3} \text{ mol}$                   |
| 69.     |                                                                                                                                     | rode potential of three<br>educing power of thes |                                            | e -1.3V, 0.6V and -3.0V<br>der                                 |
|         | (a) X > Y > Z                                                                                                                       | (b) $Y > Z > X$                                  | (c) Y > X > Z                              | (d) Z > X > Y                                                  |
| 70.     | The emf of the give                                                                                                                 | n cell Pt $ H_2(P_1) H^+(a)$                     | $(q) H_2(P_2) $ Pt is given                | by                                                             |
|         | (a) $(RT/F)\ln(P_1/I)$                                                                                                              | $(P_2)$ (b) $(RT/2F)\ln(P_1)$                    | $/P_2$                                     |                                                                |
|         | (c) $(RT/F)ln(P_2/I)$                                                                                                               | (d) None of these                                |                                            |                                                                |
| 71.     | Acetaldehyde (CH <sub>3</sub> CHO) decomposes by second order kinetics with a rate constant of                                      |                                                  |                                            |                                                                |
|         | $0.334M^{-1}s^{-1}$ at $500^{\circ}$ C. The time it would take for 80% of the acetaldehyde to                                       |                                                  |                                            |                                                                |
|         | decompose in a sar                                                                                                                  | nple that has an initial                         | concentration of 0.00                      | 0750 M is                                                      |
|         | (a) ~ 1600 sec                                                                                                                      | (b) ~ 1850 sec                                   | (c) ~ 1000 sec                             | (d) ~ 5100 sec                                                 |
| 72.     | For a van der Waal                                                                                                                  | s gas, the inversion te                          | mperature is given by                      |                                                                |



### M.Sc. Entrance | DU 2016

|     | (a) $T_i = 2aR/b$                         | (b) $T_i = a/2Rb$                       | (c) $T_i = ab/2R$          | (d) $T_i = 2a / Rb$                                  |
|-----|-------------------------------------------|-----------------------------------------|----------------------------|------------------------------------------------------|
| 73. | Heat capacity of a dia                    | atomic gas in the low t                 | emperature range           |                                                      |
|     | (a) is independent of                     | its temperature                         |                            |                                                      |
|     | (b) decreases with in                     | icrease in temperature                  | 2                          |                                                      |
|     | (c) increases with inc                    | crease in temperature                   |                            |                                                      |
|     | (d) increases followed                    | ed by a decrease with i                 | ncrease in temperatur      | e                                                    |
| 74. | The ionic strength of                     | a solution which is 0.                  | 1 m in KCl and 0.2 m in    | $K_2SO_4$ is                                         |
|     | (a) 0.96 m                                | (b) 0.70 m                              | (c) 0.011 m                | (d) 1.12 m                                           |
| 75. | Which of the following                    | ng facts regarding the                  | viscosity of gas is corre  | ect                                                  |
|     | (a) Viscosity of gas is                   | due to intermolecular                   | rinteraction               |                                                      |
|     | (b) Viscosity of gas is                   | s independent of press                  | ure                        |                                                      |
|     | (c) Viscosity of gas d                    | ecreases with increase                  | e in temperature           |                                                      |
|     | (d) Viscosity of a gas                    | is independent of mol                   | ecular mass                |                                                      |
| 76. | Pure water has $[H_3C]$                   | $0^{+}$ ] = $10^{-6}$ moles $L^{-1}$ at | t 90°C, the value of K     | w at this temperature                                |
|     | will be                                   |                                         |                            |                                                      |
|     | (a) $10^{-8} \text{ M}^2$                 | (b) $10^{-12} \text{ M}^2$              | (c) $10^{-14} \text{ M}^2$ | (d) $10^{-6} \text{ M}^2$                            |
| 77. | If we titrate NH <sub>4</sub> OH          | against HCl at 25°C,                    | the pH of the solution a   | at equivalence point                                 |
|     | will be                                   | TO                                      | - IOIIA                    |                                                      |
|     | (a) ~ 5.5                                 | (b) ~ 1.5 <b>/ 4 /</b>                  | (c) ~ 8.5                  | (d) ~ 9.5                                            |
| 78. | Which of the following sulphide sol       | ng ions is the most effe                | ective in the coagulatio   | n of an Arsenic                                      |
|     | (a) Ca <sup>2+</sup>                      | (b) K <sup>+</sup>                      | (c) Al <sup>3+</sup>       | (d) Cl <sup>-</sup>                                  |
| 79. | For a diatomic gas at                     | high temperature the                    | value of the ratio of C    | $_{\mathrm{p,m}}$ and $\mathrm{C}_{\mathrm{v,m}}$ is |
|     | (a) 7/5                                   | (b) 2/3                                 | (c) 9/7                    | (d) 9/11                                             |
| 30. | The rate of diffusion molecular weight of | _                                       | temperature is twice t     | hat of gas 'P'. The                                  |
|     | (a) 64                                    | (b) 36                                  | (c) 40                     | (d) 16                                               |
|     |                                           |                                         |                            |                                                      |

\*\* +91 98369 24983 \*\* +91 85829 79309

D - - - | 11



#### M.Sc. Entrance

- 81. The angular momentum of an electron in 4f orbital is
  - (a)  $(24)^{\frac{3}{2}}(h/2\pi)$  (b)  $(12)^{\frac{1}{2}}(h/2\pi)$  (c)  $(6)^{\frac{1}{2}}(h/2\pi)$  (d)  $(2)^{\frac{1}{2}}(h/2\pi)$

- 82. In an atomic orbital the sign of lobes indicate
  - (a) sign of charge

- (b) sign of the probability distribution
- (c) sign of the wave function
- (d) presence and absence of electrons
- 83. The energy of the electron in the first Bohr orbit for hydrogen is -13.6 eV. Which one of the following is the possible energy of the excited state for electron in Bohr orbits of hydrogen atom?
  - (a) -3.4 eV
- (b) -6.8 eV (c) +1.9 eV
- (d) 13.6 eV
- A particle of mass  $2.0 \times 10^{-26}$  g is in a one dimensional box of length 4.0 nm. The 84. wavelength of the photon emitted when this particles goes from n=3 to n=2 level is
  - (a)  $1.11 \times 10^{-5}$  m
- (b)  $3 \times 10^{-10}$  m
- (c)  $8.96 \times 10^{-6}$  m
- (d)  $2.32 \times 10^{-4}$  m
- An electrochemical cell can behave like an electrolyte cell when 85.

 $(E_{ext} : external emf)$ 

- Which of the following expressions is not correct (the symbols have their usual 86. meanings)
  - (a)  $A = \log(I_0/I)$

(c)  $\bar{v} = (1/2\pi c)(\mu/K)$ 

- **87.** Which of the following expression about logarithm is incorrect
  - (a)  $\log(2)^{2n} = n\log 4$

- (b)  $\log(m+n) = \log m + \log n$
- (c)  $\log(m/n) = \log m \log n$
- (d) log 1000 = 3
- 88. Which of the following is not true for X-rays
  - (a) These radiation can ionize gases



M.Sc. Entrance

- (b) It causes ZnS to fluoresce
- (c) These are deflected by electric and magnetic fields
- (d) Have wavelength shorter than ultraviolet radiations
- 89. Which of the following statement is not correct for the order of a reaction
  - (a) The order of a reaction is the sum of coefficients to the reactants in the balanced chemical equation
  - (b) The order of a reaction is an experimentally determined quantity
  - (c) The order of a reaction can be fractional
  - (d) The order of a reaction can be zero
- 90. Which of the following represents the wave of number of radiation lying in the visible region
  - (a)  $2 \times 10^4$  cm
- (c) 4×10° cm<sup>-1</sup> (c) 4×10° cm<sup>-1</sup>
  - /(d)  $4 \times 10^{12} \text{ cm}^{-1}$

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)

Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

**\*** +91 98369 24983



