

DU M.SC. ENTRANCE CHEMISTRY 2015

1. $4H_3AsO_3 + 3Na[BH_4] \rightarrow + H_3BO_3 + N_3$	a0H
--	-----

- (a) $As(OH)_a$
- (b) Na₂AsO₄
- (c) AsH₂
- (d) As_2O_2
- 2. Of the following nuclides, the one most likely to be radioactive is
 - (a) $_{6}^{14}$ C
- (b) ${}_{6}^{14}$ N
- (c) $^{31}_{15}$ P
- (d) $_{30}^{66}$ Zn
- Arrange the following metal-carbonyl complexes in the increasing order of the carbonyl 3. stretching frequency:

$$\left[\operatorname{Fe}(\operatorname{CO})_{4}\right]^{2}$$
, $\left[\operatorname{Mn}(\operatorname{CO})_{6}\right]^{+}$ and $\left[\operatorname{Cr}(\operatorname{CO})_{6}\right]$

- (a) $\lceil Mn(CO) \rceil^+ \lceil Cr(CO) \rceil < \lceil Fe(CO) \rceil$
- (b) $\lceil Fe(CO)_4 \rceil^{2-} < \lceil Cr(CO)_6 \rceil < \lceil Mn(CO) \rceil$
- (c) $\left[\operatorname{Cr}(CO)_{6} \right] < \left[\operatorname{Mn}(CO)_{6} \right]^{+} < \left[\operatorname{Fe}(CO)_{4} \right]^{2}$
- (d) $\left[\text{Fe(CO)}_{4} \right]^{2-} < \left[\text{Mn(CO)}_{6} \right]^{+} < \left[\text{Cr(CO)}_{6} \right]$
- The self-indicating silica gel (impregnated with cobalt chloride) turns pink on absorbing 4. moisture and become blue on heating. The pink and blue colours are respectively due to
 - (a) Co^{2+} and Co^{3-}

- The country of the c
- (c) $\left[\text{Co}(\text{H}_2\text{O}_6) \right]^{2+}$ and $\left[\text{CoCl}_4 \right]^{2-}$
- (d) $\left[\operatorname{Co}(\operatorname{H}_2\operatorname{O}_6)\right]^{2+}$ and $\left[\operatorname{Co}(\operatorname{H}_2\operatorname{O}_6)\right]^{3+}$
- 5. Which one of the following molecules doesn't obey the 18e rule

- (a) $\left[\operatorname{Mn}(\operatorname{CO})_{6}\right]^{+}$ (b) $\left[\operatorname{Fe}(\operatorname{CO})_{5}\right]$ (c) $\left[\operatorname{Cr}(\operatorname{CO})_{5}\right]^{2-}$ (d) $\left[\operatorname{Mn}(\operatorname{CO})_{4}\operatorname{Cl}_{2}\right]^{2-}$
- The calculated magnetic moment (B.M) of Eu³⁺ system will be 6.
 - (a) 0
- (b) 3.42
- (c) 7.91
- (d) 3.61
- 7. The acidic strength of the following oxo-acid is in order

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

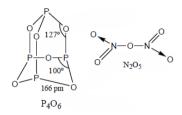
***** +91 98369 24983

***** +91 85829 79309

M.Sc. Entrance | DU 2015

- (a) HOF < HOCl < HOBr < HOI
- (b) HOCl < HOF < HOBr < HOI
- (c) HOI < HOBr < HOCl < HOF
- (d) HOI < HOBr < HOF < HOCl
- 8. Identify the correct IUPAC nomenclature for the given complex : $[Pt(py)_4][Pt(Cl_4)]$
 - (a) Tetrapyridineplatinum (II) tetrachloroplatinate (II)
 - (b) Tetrachloroplatinate (II) Tetrapyridineplatinum (II)
 - (c) Tetrachloro-tetrapyridine bis platinum (II)
 - (d) Platinum (II) tetrapyridinyl platinum (II) tetrachlorate
- 9. A solution containing $2.675 \, \mathrm{g}$ of $\mathrm{CoCl}_2.6\mathrm{NH}_3$ (molecular weight = 267.5) is passed through a cation exchanger. The chloride ions obtained is solutions were treated with excess of AgNO_3 to give $4.78 \, \mathrm{g}$ of AgCl . (molecular weight = 143.5). The formula of the complex formed is
 - (a) $\left[\text{CoCl}_2 \left(\text{NH} \right)_3 \right]_4 \left[\text{Cl} \right]$

(b) $\left[\text{CoCl}_3 \left(\text{NH} \right)_3 \right]_3$


(c) $\left[\text{Co(NH)}_{3} \right]_{6} \left[\text{Cl}_{3} \right]$

- (d) $\left[\text{CoCl}(\text{NH})_3 \right]_5 \left] \text{Cl}_2 \right]$
- **10.** The empirical formula of Layered silicate structures in clays is :
 - (a) SiO_4^{4-}
- (b) $Si_2O_5^{2}$
- (c) $Si_2O_7^6$
- (d) $\left(\operatorname{SiO}_{3}\right)_{n}^{2n-}$
- 11. Predict the extrinsic semiconducting properties of WO₃ and CdO
 - (a) Both p-type semiconductor
 - (b) Both n-type semiconductor
 - (c) WO₃ is n-type and CdO is insulator
 - (d) WO₃ is n-type and CdO is p-type semiconductor
- 12. N_2O_5 have open structure, whereas P_4O_6 has closed cage structure as shown in figure , the formation of open structure in N_2O_5 is due to

M.Sc. Entrance | DU 2015

- (a) $d_n pp$ mixing
- (b) dp-dp mixing
- (c) pp-pp mixing
- (d) None of these
- **13.** When XeF₆ reacts will silica or glass, it gives a colourless liquid of the following composition
 - (a) $SiXeO_{2}F_{6}$
- (b) XeO₂
- (c) XeO_4F_2
- (d) $XeOF_4$

- **14.** Waker's process uses the catalyst:
 - (a) $[PdCl_4]^2$

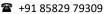
(b) $\left[Rh(CO)_{2}I_{2} \right]$

(c) $\left[Pt(C_2H_4)Cl_3 \right]$

- (d) $Cp_2TiCl_2 Al(C_2H_5)_3$
- **15.** Metal function needed in photosynthesis and respiration are :
 - (a) Zn, Ga and Ca

(b) Zn, Mg and Ca

(c) Al, Ga and In


- (d) Mn, Fe, Co and Cu
- **16.** Term symbols for d² configuration are ³F, ³P, ¹D, ¹S, ¹G and the ground state term is
 - (a) 3F_4
- (b) ³F
- $(c)^{1}G_{A}$
- (d) ${}^{3}P_{0}$
- 17. How many vibrational modes are present in NH₃?
 - (a) 4
- (b) 6
- (c) 5
- (d) 12
- 18. The charge/size ratio of a cation determines it's polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of cationic species: K^+ , Ca^{2+} , Mg^{2+} , Be^{2+}
 - (a) $K^+ < Ca^{2+} < Mg^{2+} < Be^{2+}$
- (b) $Ca^{2+} < Be^{2+} < Mg^{2+} < K^{+}$
- (c) $Be^{2+} < Mg^{2+} < Ca^{2+} < K^{+}$
- (d) $Mg^{2+} < Ca^{2+} < Be^{2+} < K^{+}$
- **19.** The poly-nuclear complexes (I) and (II) shown below are

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)

North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)

Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

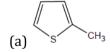
***** +91 98369 24983

M.Sc. Entrance

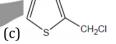
Polynuclear complex (I)

$$[(H_3N)_4Co] \xrightarrow{H_2} N V [Co(NH_3)_2Cl_2]^{2+}$$

Polynuclear complex (II)


$$[(CI)(H_3N)_3Co] \xrightarrow{H_2} IV \\ [Co(NH_3)_3(CI)]^{2^+}$$

- (a) Ionization isomer (b) Stereoisomer
- (c) Coordination position isomer
- (d) Coordination isomer
- 20. Capacity of anion exchanger resin decrease with
 - (a) decrease in pH


(b) increase in pH

(c) at pH=7

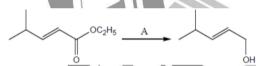
- (d) Not affected by pH
- Bromination of toluene gives 21.
 - (a) Only 3-bromotoluene as product
 - (b) Only 4-bromotoluene as product
 - (c) Mixture of 2-bromotoluene and 4-bromotoluene as products
 - (d) Mixture of 3-bromotoluene and 4-bromotoluene as products
- SN⁻¹ reaction on optically active substrate mainly gives 22.
 - (a) Racemic product (b) Inversion of configuration
 - (c) Retention of configuration
- (d) No product
- 23. The electrophilic aromatic substitution proceeds thorough
 - (a) Free radical
- (b) Sigma complex (c) benzyne
- (d) carbene
- Thiophene reacts with HCHO in presence of aqueous HCl to give 24.

(b)

- 25. Aldose and ketose are differentiated by
 - (a) Tollen's reagents (b) Fehling's solution
 - (c) Br₂ water

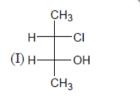
- (d) HIO₄
- **26.** Rearrange the following in the order of acid strength
 - (I) Benzoic acid

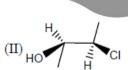
(II) 4-methoxybenzoic acid



- (III) 2-methoxybenzoic acid
- (a) I < II < III
- (b) III < I < II
- (c) II < I < III
- (d) III < II < I
- **27.** Which one of the following reactions will not result in formation of anisole
 - (a) Phenol + dimethyl sulfate in presence of base
 - (b) Sodium phenoxide treated with methyl iodide
 - (c) Reaction of diazomethane with phenol
 - (d) Reaction of methyl magnesium iodide with phenol
- **28.** 2-phenylethanol may be prepared by the reaction of phenyl magnesium bromide with
 - (a) HCHO
- (b) CH₂CHO
- (c) CH₃COCH₃
- a) 🖔

- 29. 2-Acetoxy benzoic acid is known as
 - (a) Aspirin
- (b) Paracetamol
- (c) Ibuprofen
- (d) Wintergreen oil

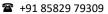

30. For the following reaction



Reagent A is

- (a) LiAlH₄
- (b) NaBH,
- (c) KBH₄
- (d) Borane

31. Correct relation between compound I and II is

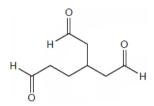


(a) I and II are identical

- (b) I and II are diastereomer
- (c) I and II are enantiomer
- (d) I and II are meso compounds
- **32.** The correct IUPAC name of the below given compound is

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)
North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)
Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

***** +91 98369 24983



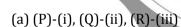
M.Sc. Entrance | DU 2015

- (a) (4-formylmethyl)-hexane-1, 6-dial (2-formylethyl)-pentane-1, 5-dial
- (b) (3-formylethyl)-pentane-1, 5-dial (c)
- (d) (3-formylmethyl)-hexane-1, 6-dial
- **33.** The number of signals observed in ${}^{1}H$ NMR of 1, 3-dibromobenzene
 - (a) 3
- (b) 4
- (c) 2
- (d) 6
- **34.** The fisher projection of meso-tartaric acid represents :
 - (a) Skew from
- (b) Staggered form
- (c) Eclipsed form
- (d) Gauche form
- **35.** Match the compounds (List I) with correct IR frequency of C-O stretching (list II)

List-I

List-II

(P)


(i) 1840 cm⁻¹

(ii) 1740 cm⁻¹

(iii) $1770 \, \text{cm}^{-1}$

(b) (P)-(i), (Q)-(iii), (R)-(ii)

- (d) (R)-(i), (Q)-(ii), (P)-(iii)
- **36.** Among the following compounds, the most basic compound is

37. The reaction of cyclooctyne with $HgSO_4$ in the presence of aqueous H_2SO_4 gives

M.Sc. Entrance | DU 2015

38. The major product formed on nitration of N, n-dimethylaniline with conc. $H_2SO_4 - HNO_3$ mixture is

39. The major product obtained upon treatment of compound X with H_2SO_4 at $80^{\circ}C$

- **40.** The compound is
 - (a) anti-aromatic and has no dipole moment
 - (b) non-aromatic and has high dipole moment
 - (c) aromatic and has high dipole moment
 - (d) aromatic and has less dipole moment
- **41.** Match List I with List II and select the correct answer

List I

List II

(A) Critical temperature

1. $\frac{a}{Rb}$

(B) Boyle temperature

 $2. \frac{2a}{a / Rb}$

- (C) Inversion temperature
- 3. $\frac{T}{T_c}$

(D) Reduced temperature

4. $\frac{8a}{27 \text{ Rh}}$

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)

North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)

Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | DU 2015

	A B C	D A B	C D						
	a) 2 1 4	3 (b) 4 3	2 1						
	2) 2 3 4	1 (d) 4 1	2 3						
2.	Which has the maximum value of mean free path?								
	a) CO ₂	(b) H ₂		(c) 0_2	(d) N ₂				
3.	s the supercooled	water freezes sp	pontane	ously, its temperature	erises to 0° C, Δ H				
for the spontaneous process is equal to $H_2O(l)$ at $-10^{\circ}C \rightarrow H_2O(l)$ at $0^{\circ}C$									
	(a) enthalpy of fusion (b) enthalpy of vaporization								
	(c) enthalpy of sublimation (d) Zero								
4.	60 g of urea is dissolved in 1100 g solution. To keep ΔT / $K_{\rm f}$ as 1 mol/kg, water separated in the form of ice is								
	a) 40 g	(b) 60 g		(c) 100 g	(d) 200 g				
.5.			re of an	aqueous NaCl is 0.167	. No. of moles of NaCl				
	resent is 180 g of								
	a) 2 mol	(b) 1 mol		(c) 3 mol	(d) 4 mol				
6.	Elevation in boiling point of an aqueous urea solution is 0.52° ($K_b \neq 0.52$ $mol^{-1}kg$).								
Ience	ole fraction of ure		ı is	\times					
	ı) 0.982	(b) 0.0567		(c) 0.943	(d) 0.018				
7.	ollowing are the	values of E_a and	ΔH for t	three reactions carrie	d out at the same				
	emperature			1,					
	$E_a = 20 \text{kJ mol}^{-1}$	1 , $\Delta H = -60$ kJ m	iol ⁻¹						
	(II) $E_a = 10 \text{kJ mol}^{-1}$, $\Delta H = -20 \text{kJ mol}^{-1}$								
	(III) $E_a = 20 \text{kJ mol}^{-1}, \Delta H = +15 \text{kJ mol}^{-1}$								
	If all the three reactions have same frequency factor then factor then fastest reactions are								
	Fastest	Slowest							
	ı) I	II							
	all the three reac re Fastest	tions have same Slowest		cy factor then factor t	hen faste				

- (b) II
- III
- (c) II
- III
- (d) cannot be predicted
- For reaction $2A + B \rightarrow \text{product}$, rate law is $-\frac{d[A]}{dt} = k[A]$. At a time when $t = \frac{1}{k}$, 48. concentration of the reactant is : (C_0 = initial concentration)
 - (a) $\frac{C_0}{}$
- (b) $\frac{1}{C}$
- (d) $\frac{e}{c}$
- Acid hydrolysis of ester is first-order reaction and rate constant is given by 49.

$$k = \frac{2.303}{t} log \frac{V_{\infty} - V_{0}}{V_{\infty} - V_{0}}$$

Where V_0 , V_t and V_{∞} are the volumes of standard NaOH to neutralize acid present at a given time; if ester is 50% hydrolysed then:

- (a) $V_{x} = V_{t}$
- (b) $V_{\infty} = (V_t V_0)$ (c) $V_{\infty} = 2V_t V_0$ (d) $V_{\infty} = 2V_t + V_0$
- **50**. Temperature of 1 mol of gas is increased by 1° at constant pressure. Work done:
 - (a) R
- (b) 2R
- (d) 3R
- K_{sp} of $Mg(OH)_2$ is 1.8×10^{-11} t 30° C. Its molar solubility is at pH = 12 **51**.
 - (a) 1.8×10^{-11} M
- (b) 1.8×10^{-9} M (c) 1.34×10^{-54} M (d) 1.8×10^{-7} M
- For the half cell $Cl / Pt(Cl_2)$, the value of $(E-E^0)$ **52**.

 - (a) increases as $\lceil Cl^- \rceil$ increases (b) decreases as $\lceil Cl^- \rceil$ increases
 - (c) remains constant as Cl⁻ increases
- (d) cannot be predicated
- **53.** If E_0 is the zero point energy of a harmonic oscillator of frequency v and h is the planck's constant than its energy in the n = 2 state will be
 - (a) $(E_0 + hv)$
- (b) $2E_0$
- (c) $4E_0$
- (d) $(E_0 + 2hv)$
- 54. The molecules which are IR-inactive but raman active is:

M.Sc. Entrance | DU 2015

(a) N_2	(b) HCl	(c) SO_2	(d) Protein
(a) 11 ₂	(6) 1101	(c) b c_2	(a) i i oteini

55. A thermos bottle containing coffee is vigorously shaken and there by the temp of the coffee rises. Regard the coffee as system

(a)
$$Q = 0$$
; $W = -ve$ ΔU is + ve (b) $Q = 0$; $W = +ve$; ΔU is + ve

(c)
$$Q = 0$$
; $W = -ve$ ΔU is $-ve$ (d) $Q = 0$; $W = +ve$; ΔU is $-ve$

- **56.** Conjugate base of H₂ is
 - (a) H^+ (b) H_3^+ (c) H^-
- 57. Lithium selenide can be described as a closest packed array of selenide ions with lithium ions in all the tetrahedral holes. Formula of lithium selenide is
 - (a) Li_2Se (b) Li_2Se_3 (c) LiSe_2 (d) Li_3Se
- **58.** The pK_a of an amino acid is 9.15. At what pH amino acid is 5% dissociated?
- (a) 9.15 (b) 4.85 (c) 9.44 (d) 7.87
- 59. For the equilibrium $NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$ $\rho CO_2 = 1$ atm at 100°C. Hence equilibrium constant is :
 - (a) 1 atm³ (b) 2 atm³ (c) 4 atm³ (d) 3 atm³
- **60.** For the following equilibrium $NH_2CO_2NH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$

 $\rm K_p$ is found to be 0.5 at 500 K. Hence the partial of $\rm NH_3$ and $\rm CO_2$ are respectively

(a) 2.0 and 1.0 (b) 1.0 and 2.0 (c) 1.0 and 0.5 atm (d) 0.5 and 1.0 atm