## DU M.SC. ENTRANCE CHEMISTRY 2015

1. $4 \mathrm{H}_{3} \mathrm{AsO}_{3}+3 \mathrm{Na}\left[\mathrm{BH}_{4}\right] \rightarrow \ldots . . . . .+\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{NaOH}$
(a) $\mathrm{As}(\mathrm{OH})_{3}$
(b) $\mathrm{Na}_{3} \mathrm{AsO}_{4}$
(c) $\mathrm{AsH}_{3}$
(d) $\mathrm{As}_{2} \mathrm{O}_{3}$
2. Of the following nuclides, the one most likely to be radioactive is
(a) ${ }_{6}^{14} \mathrm{C}$
(b) ${ }_{6}^{14} \mathrm{~N}$
(c) ${ }_{15}^{31} \mathrm{P}$
(d) ${ }_{30}^{66} \mathrm{Zn}$
3. Arrange the following metal-carbonyl complexes in the increasing order of the carbonyl stretching frequency:

4. The self-indicating silica gel (impregnated with cobalt chloride) turns pink on absorbing moisture and become blue on heating. The pink and blue colours are respectively due to
(a) $\mathrm{Co}^{2+}$ and $\mathrm{Co}^{3+}<h / T A\left(\right.$ b) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\mathrm{Co}_{2} \mathrm{CO}_{3}$
(c) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{2+}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$ $\square$ (d) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{3+}$
5. Which one of the following molecules doesn't obey the $18 \mathrm{e}^{-}$rule
(a) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
(b) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
(c) $\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]^{2-}$
(d) $\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right]^{2-}$
6. The calculated magnetic moment (B.M) of $\mathrm{Eu}^{3+}$ system will be
(a) 0
(b) 3.42
(c) 7.91
(d) 3.61
7. The acidic strength of the following oxo-acid is in order
(a) $\mathrm{HOF}<\mathrm{HOCl}<\mathrm{HOBr}<\mathrm{HOI}$
(b) $\mathrm{HOCl}<\mathrm{HOF}<\mathrm{HOBr}<\mathrm{HOI}$
(c) $\mathrm{HOI}<\mathrm{HOBr}<\mathrm{HOCl}<\mathrm{HOF}$
(d) $\mathrm{HOI}<\mathrm{HOBr}<\mathrm{HOF}<\mathrm{HOCl}$
8. Identify the correct IUPAC nomenclature for the given complex : $\left[\mathrm{Pt}(\mathrm{py})_{4}\right]\left[\mathrm{Pt}\left(\mathrm{Cl}_{4}\right)\right]$
(a) Tetrapyridineplatinum (II) tetrachloroplatinate (II)
(b) Tetrachloroplatinate (II) Tetrapyridineplatinum (II)
(c) Tetrachloro-tetrapyridine bis platinum (II)
(d) Platinum (II) tetrapyridinyl platinum (II) tetrachlorate
9. A solution containing 2.675 g of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{NH}_{3}$ (molecular weight $=267.5$ ) is passed through a cation exchanger. The chloride ions obtained is solutions were treated with excess of $\mathrm{AgNO}_{3}$ togive 4.78 g of AgCl. (molecular weight $=143.5$ ). The formula of the complex formed is/
(a)

(c)

(b)

10. The empirical formula of Layered silicate structures in clays is :
(a) $\mathrm{SiO}_{4}{ }^{4-}$
(b) $\mathrm{Si}_{2} \mathrm{O}_{5}$
(c) $\mathrm{Si}_{2} \mathrm{O}_{7}^{6}$
(d) $\left(\mathrm{SiO}_{3}\right)_{\mathrm{n}}{ }^{2 \mathrm{n}-}$
11. Predict the extrinsic semiconducting properties of $\mathrm{WO}_{3}$ and CdO
(a) Both p-type semiconductor
(b) Both n-type semiconductor
(c) $\mathrm{WO}_{3}$ is n-type and CdO is insulator
(d) $\mathrm{WO}_{3}$ is n-type and CdO is p-type semiconductor
12. $\mathrm{N}_{2} \mathrm{O}_{5}$ have open structure, whereas $\mathrm{P}_{4} \mathrm{O}_{6}$ has closed cage structure as shown in figure, the formation of open structure in $\mathrm{N}_{2} \mathrm{O}_{5}$ is due to

(a) $d_{p}-p p$ mixing
(b) dp-dp mixing
(c) pp-pp mixing
(d) None of these
13. When $\mathrm{XeF}_{6}$ reacts will silica or glass, it gives a colourless liquid of the following composition
(a) $\mathrm{SiXeO}_{2} \mathrm{~F}_{6}$
(b) $\mathrm{XeO}_{3}$
(c) $\mathrm{XeO}_{4} \mathrm{~F}_{2}$
(d) $\mathrm{XeOF}_{4}$
14. Waker's process uses the catalyst
(a) $\left[\mathrm{PdCl}_{4}\right.$
(c)

## $\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{3}$

(b) $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{I}_{2}\right]$
(d) $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}-\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$
15. Metal function needed in photosynthesis and respiration are:
(a) $\mathrm{Zn}, \mathrm{Ga}$ and Ca
(b) $\mathrm{Zn}, \mathrm{Mg}$ and Ca
(c) Al, Ga and In
(d) $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$ and Cu
16. Term symbols for $d^{2}$ configuration are ${ }^{3} \mathrm{~F},{ }^{3} \mathrm{P},{ }^{1} \mathrm{D},{ }^{1} \mathrm{~S},{ }^{1} \mathrm{G}$ and the ground state term is
(a) ${ }^{3} \mathrm{~F}_{4}$
(b) ${ }^{3} \mathrm{~F}_{2}$
(c) ${ }^{1} G_{4}$
(d) ${ }^{3} \mathrm{P}_{0}$
17. How many vibrational modes are present in $\mathrm{NH}_{3}$ ?
(a) 4
(b) 6
(c) 5
(d) 12
18. The charge/size ratio of a cation determines it's polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of cationic species: $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Be}^{2+}$
(a) $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$
(b) $\mathrm{Ca}^{2+}<\mathrm{Be}^{2+}<\mathrm{Mg}^{2+}<\mathrm{K}^{+}$
(c) $\mathrm{Be}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Ca}^{2+}<\mathrm{K}^{+}$
(d) $\mathrm{Mg}^{2+}<\mathrm{Ca}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}$
19. The poly-nuclear complexes (I) and (II) shown below are


(a) Ionization isomer
(b) Stereoisomer
(c) Coordination position isomer
(d) Coordination isomer
20. Capacity of anion exchanger resin decrease with
(a) decrease in pH
(b) increase in pH
(c) at $\mathrm{pH}=7$
(d) Not affected by pH
21. Bromination of toluene gives
(a) Only 3-bromotoluene as product
(b) Only 4-bromotoluene as product
(c) Mixture of 2-bromotoluene and 4-bromotoluene as products:
(d) Mixture of 3-bromotoluene and 4-bromotoluene as products
22. $\mathrm{SN}^{-1}$ reaction on optically active substrate mainly gives
(a) Racemic product (b) Inversion of configuration
(c) Retention of configuration
(d) No product
23. The electrophilic aromatic substitution proceeds thorough
(a) Free radical
(b) Sigma complex (c) benzyne
(d) carbene
24. Thiophene reacts with HCHO in presence of aqueous HCl to give
(a)

(b)


(d)
25. Aldose and ketose are differentiated by
(a) Tollen's reagents
(b) Fehling's solution
(c) $\mathrm{Br}_{2}$ water
(d) $\mathrm{HIO}_{4}$
26. Rearrange the following in the order of acid strength
(I) Benzoic acid
(II) 4-methoxybenzoic acid
(III) 2-methoxybenzoic acid
(a) I $<$ II $<$ III
(b) III $<$ I $<$ II
(c) II $<$ I $<$ III
(d) III $<$ II $<$ I
27. Which one of the following reactions will not result in formation of anisole
(a) Phenol + dimethyl sulfate in presence of base
(b) Sodium phenoxide treated with methyl iodide
(c) Reaction of diazomethane with phenol
(d) Reaction of methyl magnesium iodide with phenol
28. 2-phenylethanol may be prepared by the reaction of phenyl magnesium bromide with
(a) HCHO
(b) $\mathrm{CH}_{3} \mathrm{CHO}$
(c) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(d) $\stackrel{\circ}{\stackrel{O}{\square}}$
29. 2-Acetoxy benzoic acid is known as
(a) Aspirin
30. For the following reaction


Reagent $A$ is
(a) $\mathrm{LiAlH}_{4}$
(b) $\mathrm{NaBH}_{4}$
(c) $\mathrm{KBH}_{4}$
(d) Borane
31. Correct relation between compound I and II is
(I)

(II)

(a) I and II are identical
(b) I and II are diastereomer
(c) I and II are enantiomer
(d) I and II are meso compounds
32. The correct IUPAC name of the below given compound is

(a) (4-formylmethyl)-hexane-1, 6-dial
(b) (3-formylethyl)-pentane-1, 5-dial
(c)
(2-formylethyl)-pentane-1, 5-dial
(d) (3-formylmethyl)-hexane-1, 6-dial
33. The number of signals observed in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 1, 3-dibromobenzene
(a) 3
(b) 4
(c) 2
(d) 6
34. The fisher projection of meso-tartaric acid represents:
(a) Skew from
(b) Staggered form
(c) Eclipsed form
(d) Gauche form
35. Match the compounds (List I) with correct IR frequency of C-O stretching (list II)

(a) (P)-(i), (Q)-(ii), (R)-(iii)
(b) (P)-(i), (Q)-(iii), (R)-(ii)
(c) (P)-(iii), (Q)-(ii), (R)-(i)
(d) (R)-(i), (Q)-(ii), (P)-(iii)
36. Among the following compounds, the most basic compound is
(a)

(b)

(c)

(d)

37. The reaction of cyclooctyne with $\mathrm{HgSO}_{4}$ in the presence of aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives
(a)

(b)

(c)

(d)

38. The major product formed on nitration of N , n -dimethylaniline with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HNO}_{3}$ mixture is
(a)

(b)

(c)

(d)

39. The major product obtained upon treatment of compound X with $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $80^{\circ} \mathrm{C}$

(a)

(a) anti-aromatic and has no dipole moment
(b) non-aromatic and has high dipole moment
(c) aromatic and has high dipole moment
(d) aromatic and has less dipole moment
41. Match List I with List II and select the correct answer

List I

## KATA

(A) Critical temperature

1. $\frac{\mathrm{a}}{\mathrm{Rb}}$
2. $\frac{2 \mathrm{a}}{\mathrm{a} / \mathrm{Rb}}$
3. $\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{C}}}$
4. $\frac{8 \mathrm{Ba}}{27 \mathrm{Rb}}$

|  | A | B | C | D | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (a) | 2 | 1 | 4 | 3 (b) | 4 | 3 | 2 | 1 |
| (c) | 2 | 3 | 4 | 1 (d) | 4 | 1 | 2 | 3 |

42. Which has the maximum value of mean free path?
(a) $\mathrm{CO}_{2}$
(b) $\mathrm{H}_{2}$
(c) $\mathrm{O}_{2}$
(d) $\mathrm{N}_{2}$
43. As the supercooled water freezes spontaneously, its temperature rises to $0^{\circ} \mathrm{C}$, for the spontaneous process is equal to $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $-10^{\circ} \mathrm{C} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $0^{\circ} \mathrm{C}$
(a) enthalpy of fusion (b) enthalpy of vaporization
(c) enthalpy of sublimation $\longrightarrow$ (d) Zero
44. 60 g of urea is dissolved in, 1100 g solution. To keep $\Delta \mathrm{T} / \mathrm{K}_{\mathrm{f}} \mathrm{as} 1 \mathrm{~mol} / \mathrm{kg}$, water separated in the form of ice is
(a) 40 g
(b) 60 g
(c) 100 g
(d) 200 g
45. Relative decrease in vapour pressure of an aqueous NaCl is 0.167 . No. of moles of NaCl present is 180 g of $\mathrm{H}_{2} \mathrm{O}$ is
(a) 2 mol
(b) 1 mol
(c) 3 mol
(d) 4 mol
46. Elevation in boiling point of an aqueous urea solution is $0.52^{\circ}\left(\mathrm{K}_{\mathrm{b}}=0.52 \mathrm{~mol}^{-1} \mathrm{~kg}\right)$. Hence mole fraction of urea in this solution is
(a) 0.982
(b) 0.056
(c) 0.943
(d) 0.018
47. Following are the values of $\mathrm{E}_{\mathrm{a}}$ and $\Delta H$ for three reactions carried out at the same temperature
(I) $\mathrm{E}_{\mathrm{a}}=20 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{H}=-60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(II) $\mathrm{E}_{\mathrm{a}}=10 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{H}=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(III) $\mathrm{E}_{\mathrm{a}}=20 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{H}=+15 \mathrm{~kJ} \mathrm{~mol}^{-1}$

If all the three reactions have same frequency factor then factor then fastest reactions are

Fastest Slowest
(a) I

II
(b) II III
(c) II III
(d) cannot be predicted
48. For reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow$ product, rate law is $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{A}]$. At a time when $\mathrm{t}=\frac{1}{\mathrm{k}}$, concentration of the reactant is: ( $\mathrm{C}_{0}=$ initial concentration $)$
(a) $\frac{\mathrm{C}_{0}}{\mathrm{e}}$
(b) $\frac{1}{\mathrm{C}_{0}}$
(c) $\frac{C_{0}}{\mathrm{e}^{2}}$
(d) $\frac{\mathrm{e}}{\mathrm{C}_{0}}$
49. Acid hydrolysis of ester is first-order reaction and rate constant is given by $\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{V_{\infty}-V_{0}}{V_{60}-V_{0}}$

Where $V_{0}, V_{t}$ and $V_{s}$ are the volumes of standard NaOH to neutralize acid present at a given time; if ester is $50 \%$ hydrolysed then :
(a) $V_{\infty}=V_{t}$
(b) $V_{\infty}=\left(V_{t}-V_{0}\right)$
(c) $V_{\infty}=2 V_{t}-V_{0}$
(d) $V_{\infty}=2 V_{t}+V_{0}$
50. Temperature of 1 mol of gas is increased by $1^{\circ}$ at constant pressure. Work done :
(a) R
(b) 2 R
(c) $R / 2$
(d) 3 R
51. $\mathrm{K}_{\text {sp }}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1.8 \times 10^{-11} \mathrm{t} 30^{\circ} \mathrm{C}$. Its molar solubility is............. at $\mathrm{pH}=12$
(a) $1.8 \times 10^{-11} \mathrm{M}$
(b) $1.8 \times 10^{-9} \mathrm{M}$
(e) $1.34 \times 10^{-54} \mathrm{M}$
(d) $1.8 \times 10^{-7} \mathrm{M}$
52. For the half cell $\mathrm{Cl} / \operatorname{Pt}\left(\mathrm{Cl}_{2}\right)$, the value of $\left(\mathrm{E}-\mathrm{E}^{0}\right)$ :
(a) increases as $\left[\mathrm{Cl}^{-}\right]$increases
(b) decreases as $\left[\mathrm{Cl}^{-}\right]$increases
(c) remains constant as $\left[\mathrm{Cl}^{-}\right]$increases
(d) cannot be predicated
53. If $E_{0}$ is the zero point energy of a harmonic oscillator of frequency $v$ and $h$ is the planck's constant than its energy in the $\mathrm{n}=2$ state will be
(a) $\left(\mathrm{E}_{0}+\mathrm{hv}\right)$
(b) $2 \mathrm{E}_{0}$
(c) $4 \mathrm{E}_{0}$
(d) $\left(\mathrm{E}_{0}+2 \mathrm{hv}\right)$
54. The molecules which are IR-inactive but raman active is :
(a) $\mathrm{N}_{2}$
(b) HCl
(c) $\mathrm{SO}_{2}$
(d) Protein
55. A thermos bottle containing coffee is vigorously shaken and there by the temp of the coffee rises. Regard the coffee as system
(a) $Q=0 ; W=-$ ve $\Delta U$ is + ve
(b) $Q=0 ; W=+v e ; \Delta U$ is + ve
(c) $\mathrm{Q}=0 ; \mathrm{W}=-\mathrm{ve} \Delta \mathrm{U}$ is - ve
(b) $Q=0, W$ (d) $Q=0 ; W=+v e ; \Delta U$ is $-v e$
56. Conjugate base of $\mathrm{H}_{2}$ is
(a) $\mathrm{H}^{+}$
(b) $\mathrm{H}_{3}^{+}$

(c) $\mathrm{H}^{-}$
(d) $\mathrm{H}_{3}^{-}$
57. Lithium selenide can be described as a closest - packed array of selenide ions with lithium ions in all the tetrahedral holes. Formula of lithium selenide is
(a) $\mathrm{Li}_{2} \mathrm{Se}$
(b) $\mathrm{Li}_{2} \mathrm{Se}_{3}$
(c) $\mathrm{LiSe}_{2}$
(d) $\mathrm{Li}_{3} \mathrm{Se}$
58. The $\mathrm{pK}_{\mathrm{a}}$ of an amino acid is 9.15. At what pH amino acid is $5 \%$ dissociated?
(a) 9.15
(b) 4.8
(c) 9.44
(d) 7.87
59. For the equilibrium $\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\rho \mathrm{CO}_{2}=1 \mathrm{~atm}$ at $100^{\circ} \mathrm{C}$. Hence equilibrium constant is :
(a) $1 \mathrm{~atm}^{3}$
(b) $2 \mathrm{~atm}^{3}$
(c) $4 \mathrm{~atm}^{3}$
(d) $3 \mathrm{~atm}^{3}$
60. For the following equilibrium $\mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{NH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}$ is found to be 0.5 at 500 K . Hence the partial of $\mathrm{NH}_{3}$ and $\mathrm{CO}_{2}$ are respectively
(a) 2.0 and 1.0
(b) 1.0 and 2.0
(c) 1.0 and 0.5 atm
(d) 0.5 and 1.0 atm

