

M.Sc. Entrance | BHU 2013

BHU M.Sc. CHEMISTRY ENTRANCE - 2013

1.	Figures defining precision do not include			
2.	(a) absolute standar (c) coefficient of vari Which of the followin	d deviation ance ng statements is false?	(b) relative standard (d) limit of detection	deviation
	(a) A precise measur	ement may be inaccur	ate	
	(b) An accurate mea	surement is always pre	cised.	
	(c) Accuracy applies data and geographic	only to attribute data d data.	whereas precision to a	ttribute both simple
	(d) High accuracy an	d high precision are bo	oth expensive and diffi	cult to acquire
3.	Absorption chromat	ography is also known	as	
	(a) Liquid-liquid chr	omatography	(b) Liquid-gas chrom	natography
	(c) Liquid-solid chro	matography	(d) Paper chromatog	raphy
4.	Adsorption chromat	ography is the best sep	aration technique for	
	(a) charged species		(b) non-polar compo	ounds
	(c) compounds bear	ng lone pair	(d) compounds beari	ing halide groups
5.	Which one of the foll	owing is 2-D chromato	graphy?	
	(a) Gas chromatogra	phy	(b) HPLC	
	(c) Paper chromatog	raphy KATA	(d) Ion-exchange chr	omatography
6.	Which one of the foll	owing is not a planar o	hromatography?	
	(a) High performanc	e liquid chromatograp	hy	
	(b) High performance	e thin layer chromatog	raphy	
	(c) Paper chromatog	raphy		
	(d) Electrochromato	graphy		
7.	The precision of the	mean of a series of N m	neasurements can be b	oeter represented as
	(a) S/\sqrt{N}	(b) S/N	(c) S / $\sqrt{N-1}$	(d) S/N-1

8. The efficiency of a chromatographic column can be increased by

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2013

(a) increasing plate height

(c) increasing length of the column

- (b) decreasing plate height
- (d) decreasing length of the column
- 9. The number of plates (N) can be computed in terms of the retention time of a peak t_R and the width of the peak at its base W by the relationship

(a)
$$N = 16 \left(\frac{W}{t_R}\right)^2$$
 (b) $N = 16 \left(\frac{t_R}{W}\right)^2$ (c) $N = 16 \left(\frac{t_R}{W}\right)^{\frac{1}{2}}$ (d) $N = 16 \left(\frac{W}{t_R}\right)^{\frac{1}{2}}$

- **10.** EDTA stands for
 - (a) ethylene diamine tetraacetic acid
 - (b) disodium salt of ethylene diamine tetraacetic acid
 - (c) tetrasodium salt of ethylene diamine tetraacetic acid
 - (d) ethylene diamine.
- **11.** Liquid-liquid chromatography is also called as
 - (a) ion-exchange chromatography (b) affinity chromatography
 - (c) adsorption chromatography (d) partition chromatography
- **12.** The reverse-phase chromatography is one
 - (a) In which the stationary phase is polar and mobile phase is non-polar
 - (b) In which the stationary phase is non-polar and mobile phase is non-polar
 - (c) In which both phase are non-polar
 - (d) In which both phase are polar
- **13.** The solute polarities are in the order A > B > C. In reverse-phase chromatography the order of elution will be

ND

(a)
$$A > B > C$$
 (b) $C > B > A$ (c) $B > C > A$ (d) $B > A > C$

- **14.** Which statement(s) are ture?
 - (A) Cation-exchange resins have primary amine groups
 - (B) Cation-exchange resins have sulfonic acid groups.
 - (C) Anion-exchange resins have tertiary amine groups

+91 98369 24983
+91 85829 79309

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 2 Website: www.aspirationacademy.in Email: info@aspirationacademy.in

- (D) Anion-exchange resins have carboxylic acid groups
- (a) A and D (b) B and C (c) A and C (d) B and C
- **15.** Which statement is correct?
 - (a) Ion-exchange and ion-exclusion chromatography are same techniques
 - (b) Ion-exchange and ion-chromatography are same technique
 - (c) Adsorption and partition chromatography as same techniques
 - (d) Ion-paired and ion-exclusion chromatography are same techniques
- **16.** Identify the structure of oxine

(a) dissolving weighed amount of As_2O_3 in water

M.Sc. Entrance | BHU 2013

(b) dissolving weighed amount of As_2O_3 in acidic water

(c) dissolving weighed amount of As_2O_3 in a basic water followed by neutralization with an acid.

- (d) dissolving weighed amount of As_2O_3 in acid followed by neutralization with a base.
- **22.** If you do not have Eriochrome Black-T for complexometric titration, can you perform this titration?
 - (a) Not at all
 - (b) Yes, with the use of an alternative indicator like phenolphthalein
 - (c) Yes, with the use of an alternative indicator like ferroin
 - (d) Wait unitl a suitable metallochromic indicator is procured.
- **23.** EDTA often combines with metal ion (regardless the charge on the cation) in the ratio of
 - (a) 1:4 (b) 1:3 (c) 1:2 (d) 1:1
- 24. Metal ions through oxinate precipitation can be estimated by
 (a) bromate titration (b) direct titration
 (c) back titration (d) colourimetric titration
- 25. EDTA titrations require a buffer of pH (a) 12 (b) 10 (c) 4 (d) 6
- **26.** In the titration of iron (II) with cerium (IV), the equivalence point potential (E_{eq}) is

(a)
$$E_{eq} = E_{Fe^{3+}/Fe^{2+}}^{0} + E_{Ce^{+4}/Ce^{3+}}^{0}$$
 (b) $E_{eq} = \frac{E_{Fe^{3+}/Fe^{2+}}^{0} + E_{Ce^{+4}/Ce^{3}}^{0}}{2}$
(c) $E_{eq} = 2\left(E_{Fe^{3+}/Fe^{2+}}^{0} + E_{Ce^{+4}/Ce^{3+}}^{0}\right)$ (d) $E_{eq} = E_{Ce^{+4}/Ce^{3+}}^{0} - E_{Fe^{3+}/Fe^{2+}}^{0}$

27. In the following potentiometric titration curve for the determination of chloride with silver nitrate.

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 4 Website: www.aspirationacademy.in Email: info@aspirationacademy.in +91 98369 24983

^{🖀 +91 85829 79309}

M.Sc. Entrance | BHU 2013

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

Which of the following relationships is correct one?

32.

M.Sc. Entrance | BHU 2013

(a) $\log \% T = \frac{I_t}{I_0} \times 100$ (b) $A = 2.0 - \log \% T$ (c) $\log \% T = \frac{I_0}{I_*} \times 100$ (d) $\log \% T = 2.0 - A$ The unit of 'molar absorptivity' is 33. (c) $L^{-1} \text{ mol}^{-1} \text{ cm}^{-1}$ (d) $L \text{ mol}^{-1} \text{ cm}^{-1}$ (a) $L \mod cm^{-1}$ (b) L mol cm Beer's law is obeyed for a complex when it is formed by taking 34. (a) metal in large excess (b) ligand in large excess (c) metal : ligand mole ratio 1.0 (d) metal : ligand mole ratio greater than 1.0 Beer's law is obeyed in the case of an aqueous solution of a weak acid, if 35. (a) solution is made acidc (b) solution is made basic (d) solution is made dilute (c) solution is made neutral A 7.25×10^{-5} M KMnO₄ solution has transmittance 10%, when measured in a 2.10 cm 36. cell at a wavelength of 525 nm. The absorbance of this solution is (b) 1.00 (c) 0.20 (d) 0.10 (a) 2.00 The distribution constant (K) for iodine between an organic solvent and water is 85. 37. What is the concentration of I_2 remaining in the aqueous layer after extraction of 50.0 mL of 1.00×10^{-3} M I₂ with the 50.0 mL of the organic solvent? (b) 5.28×10^{-7} M (c) 1.16×10^{-5} M (d) 5.29×10^{-10} M (a) 1.00×10^{-3} M 38. Green gases responsible for acid rains are (a) hydrocarbon and CO (b) CO_x and NO_x (c) NO_{x} and SO_{y} (d) CO and CO_2 39. Which ion is isoelectronic with F^- ?

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 6 Website: www.aspirationacademy.in Email: info@aspirationacademy.in

M.Sc. Entrance | BHU 2013

	(a) Li ⁺	(b) Cl ⁻	(c) Ca^{2+}	(d) 0^{2-}	
40.	How many protons are there in the nucleus of a $^{15}\mathrm{N}$ atom?				
	(a) 6	(b) 7	(c) 8	(d) 10	
41.	Which one of the following elements normally exists in the form of diatomic molecules?				
	(a) Sodium	(b) Aluminium	(c) Xenon	(d) Iodine	
42.	From each pair given $\left[\operatorname{Co}^{2^+},\operatorname{Co}^{3^+}\right]\left[\operatorname{K}^+,\operatorname{Ca}^{3^+}\right]$	below identify the ion $^{2+}$ [Na ⁺ , F ⁻] [S ²⁻ , Se ²	n which is smaller in si 2-	ze	
	(a) Co^{2+} , K^+ , F^- , S^{2-}		(b) Co ³⁺ , Ca ²⁺ , Na ⁺ , S	5^{2-}	
	(c) $\operatorname{Co}^{2+}, \operatorname{Ca}^{2+}, \operatorname{F}^{-}, \operatorname{S}^{2-}$	(d) Co ³⁺ , K ⁺ , Na ⁺ , Se	2- 40		
43.	Which one among the	e following molecules l	has a linear structure?		
	(a) hydrogen sulphid	e //	(b) Sulphur dioxide		
	(c) Ozone		(d) Hydrogen cyanid	e	
44.	What is the minimum volume of carbon dioxide at STP required to completely convert 1 mole of calciumoxide to calcium carbonate?				
	(a) 22 L	(b) 44 L	(c) 56 L	(d) 28 L	
45.	Which molecules form strong H-bonds?				
	(a) H-F and H-Cl	(b) H_2O and HCl	(c) H_2O and H_2S	(d) HF and H_2O	
46.	The bond angles in boron trifluride molecule are				
	(a) 90 degrees	(b) 109 degrees	(c) 120 degrees	(d) 104 degrees	
47.	Which one of the follo block?	owing sets contains on	e element each from s	-block, p-block, d-	
	(a) Na, Rb, Fe	(b) Cs, Ru, Bi	(c) B, Br, Sr	(d) Sc, Pt, Te	
48.	What is the maximun solution containing 1	n volume of oxygen at mole of hydrogen per	STP that will evolve w oxide is boiled?	hen an aqueous	
	(a) 22 L	(b) 11 L	(c) 44 L	(d) 6 L	
49.	10 ml of 0.10 M sodiu resultant solution is t value at the end point	ım hydroxide is added itrated against 0.20 M t?	to 10 ml 0.10 M sulph sodium hydroxide. W	uric acid and the hat will be the titre	

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2013

	(a) 5 ml	(b) 10 ml	(c) 20 ml	(d) 30 ml	
50.	A Lewis base				
	(a) acts as an electron pair donor				
	(b) acts as an electror	n pair acceptor			
	(c) always ionizes to g	give protons			
	(d) always ionizes to	give hydroxide ions			
51.	What is the formal ox	idation number of the	element 'E' in the form	nula $[H_4 E_4 O_9]^{2-}$?	
	(a) 2.5	(b)3	(c) 3.5	(d) 4	
52.	What is the change (1	n) on the molecule [C	$\operatorname{Cr}(\operatorname{C_5H_5})_2$], where Cr	is in the +2 oxidation	
	state and C_5H_5 is the	anion, cyclopentadien	yl (–1)?		
	(a) 0	(b) -1	(c) -2	(d) +1	
53.	An aqueous solution of sodium hydroxide are hydroxide is added. T	of a substance gives a added. The precipitat he substance may be	white precipitate when te dissolves when exce	n a few drops of ss of sodium	
	(a) barium chloride		(b) aluminium chlorid	le	
	(c) cadmium chloride	e(d) calcium chloride	$/\star$		
54.	Which reagent may b	e used to precipitate I	⁷ e ²⁺ ions from aqueou	s solutions?	
	(a) sodium chloride	'0/ KA	(b) Barium chloride		
	(c) Ammonium chlori	de NATA	(d) Sodium hydroxide	2	
55.	Which is the most common oxidation state observed for the lanthanide elements in their compounds?				
	(a) -1	(b) +2	(c) +3	(d) +4	
56.	Nickel forms a comple pick the correct comb	ex ion having formula ination	$\operatorname{NiCl}_{4}^{2-}$. From among t	he given statements,	
	(i) it is a nickel (II) (complex			
	(ii) it is an octahedra	al complex			

M.Sc. Entrance | BHU 2013

(iii) it is paramagnet	ic
------------------------	----

	$\left(\mathrm{iv} ight)$ nickel atom has a coordination number 4 in this complex			
	(a) i, ii, iv	(b) ii, iii, iv	(c) i, iii, iv	(d) i, iv
57.	Pick all the gases from the list which dissolve in water to give an acidic solution			cidic solution
	(i) nitrogen		(ii) carbon dioxide	
	(iii) Sulphur dioxide	(iv) sulphur trioxide		
	(v) ozone	TON	(vi) hydrogen bromi	de
	(a) i, iii, iv, vi	(b) ii, iii, iv, vi	(c) ii, iii, vi	(d) ii, iv, vi
58.	What is the correct w	ord to describe the ge	ometry of XeF ₄ ?	
	(a) Spherical	(b) Octahedral	(c) Tetrahedral	(d) Planar
59.	Which one, among th ground state?	e given atoms, has the	least number of unpai	red electrons in
	(a) C	(b) N	(c) 0	(d) F
60.	How many unpaired	electrons are there in a	an atom of zinc in its g	round state?
	(a) 0	(b) 1	(c) 2	(d) 4
61.	1. For the preparation of PF_3 , 3 moles of CaF_2 was reacted with 3 moles of PCl_3 . I isolated yield of PF_3 was 1.8 moles, what is the percentage yield?			noles of PCl_3 . If the
	(a) 30	(b) 60	(c) 80	(d) 90
62.	An element crystalliz	es in a BCC lattice. How	v many atoms are ther	e per unit cell?
	(a) 1	(b) 2	(c) 4	(d) 9
63.	Which one, among the given ions, has the highest polarizing power?			
	(a) K ⁺	(b) Na ⁺	(c) Ba ²⁺	(d) Al^{3+}
64.	Which compound car	n act as a Lewis acid as	well as a Lewis base?	
	(a) CO ₂	(b) NH ₃	(c) SnCl ₂	(d) BF ₃

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

- **65.** Two isomers are obtained for $Pd(NH_3)_2Cl_2$, while only one isomer is obtained for $Ni(NH_3)_2Cl_2$. This is because
 - (a) The two complexes differ in the oxidation state of the metal

(b) The two complexes differ in the oxidation state of the metal as well as coordination geometry

(c) The two complexes differ in their coordination geometry

(d) The two complexes differ in their oxidation state of the metal and the number of unpaired electrons.

- **66.** Which statement (s) is (are) true?
 - (i) High spin complexes are always paramagnetic
 - (ii) Low spin/complexes are always diamagnetic
 - (iii) H_2O is more likely to form a low spin complex than CN^-
 - (iv) Tetrahedral complexes are more likely to be low spin than high spin
 - (a) i, ii, iv (b) i (c) i, ii (d) i, ii and iii

67. What products are formed when Sulphur is oxidized by nitric acid?/

- (a) SO_2 , N_2 and H_2O (b) SO_4^{2-} , NO and H_2O (c) H_2 S, NO and H_2O (d) SO_4^{2-} , NO₂, and H_2O
- **68.** If Δ_0 and Δ_t denote respectively, the octahedral and the tetrahedral crystal field splitting for a given metal ion and ligand with the same bond distance, then the ratio Δ_0 / Δ_t is:
 - (a) 1.0 (b) 0.5 (c) 2.2 (d) 0.44
- **69.** Which among the ions, $[Cu(CN)_2]^-$, $[Ag(NH_3)_2]^+$, $[Au(CN)_2]^-$, $[Hg(NH_3)_2]^{2+}$ is (are) diamagnetic?

⁽a) $\left[Cu(CN)_{2} \right]^{-}$ and $\left[Au(CN)_{2} \right]^{-}$

	(b) All four of them			
	(c) $\left[Cu(CN)_2 \right]^{-}$, $\left[Au(NH_3)_2 \right]^{+}$ and $\left[Au(CN)_2 \right]^{-}$			
	(d) $\left[Hg(NH_3)_2 \right]^{2+}$			
70.	In the complexes $\left[\text{Fe}(\text{CN})_6 \right]^{3-}$ and $\left[\text{Co}(\text{en})_3 \right]^{3+}$, the coordination numbers of iron and			on numbers of iron and
	cobalt are, respective	ely (en=ethylenedia	mine)	
	(a) 6 and 6	(b) 12 and 6	(c) 6 and 3	(d) 3 and 3
71.	The nuclear reaction	in which ²⁴ Na is proc	luced from ²³ Na is a/a	an
	(a) (n, P) reaction	(b) (n, γ) reaction	(c) (α, p) reaction	(d) (α, γ) reaction
72.	The element needed larger amounts is	by the human body in	small amounts, but wi	hich acts as a poison in
	(a) silver	(b) lead	(c) mercury	(d) copper
73.	When steam is passe out at the end of the	d through a glass tube of the tube will contain	containing pieces of n n mainly	ickel, the gas coming
	(a) hydrogen and wa	ter vapour	(b) hydrogen and ox	ygen
	(c) oxygen and water	vapour	(d) oxygen	
74.	What are the produc	ts of thermal decompo	sition of $Ni(CO)_4$?	
	(a) NiC, C and O_2	(b) Ni and CO_2	(c) Ni and CO	(d) NiCO ₃ and O ₂
75.	How many unpaired electrons will be there in a f^8 lanthanide ion?			n?
	(a) 0	(b) 1	(c) 6	(d) 8
76.	Identify a pair of ions two	s from the following lis	st which are more stab	le than the remaining
	$\left[\operatorname{CoF}_{6}\right]^{3-}$, $\left[\operatorname{CoI}_{6}\right]^{3-}$, $\left[\operatorname{AgF}_{2}\right]^{-}$, $\left[\operatorname{AgI}_{2}\right]^{-}$			
	(a) $[CoF_6]^{3-}$, $[CoI_6]^{3-}$	-	(b) $\left[\operatorname{Col}_{6}\right]^{3-}$, $\left[\operatorname{AgF}_{2}\right]^{-}$	
	(c) $\left[AgF_{2} \right]^{-}$, $\left[AgI_{2} \right]^{-}$		(d) $\left[CoF_{6} \right]^{3-}$, $\left[AgI_{2} \right]^{-}$	

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2013

+91 98369 24983
+91 85829 79309

M.Sc. Entrance

BHU 2013

ASPIRATION ACADEMY

84.	Oxidation is associated with		
	(a) change in molecular weight	(b) gain in electron	
	(c) evolution of gas	(d) loss of electron	
85.	Which one of the reversible reaction in the	following?	
	(a) Sulfonation of benzene	(b) Nitration of benz	ene
	(c) Halogenation of benzene	(d) Alkylation of ben	zene
86.	The electrophile in oleum in the sulfonation	n reaction of benzene	is
	(a) SO_2 (b) SO_3	(c) SO_{3}^{-}	(d) \dot{SO}_{2}
87.	Vulcanisation of rubber is	A	
	(a) cross-linking of hydrocarbon chain in c	rude rubber by sulphu	r
	(b) heating of rubber to mould in the desire	ed shape	
	(c) decreasing its tensile strength		
	(d) decreasing its elasticity		
88.	Polyester is condensation polymer is		
	(a) phenol – formaldehyde		
	(b) terphthalic acid – ethylene glycol		
	(c) terphthalic acid – hexamethylene diamine		
	(d) urea – formaldehyde		
89.	Which one of the phenol derivatives is more steam volatile?		
	(a) o-Nitrophenol (b) m-Nitrophenol	(c) Hydroquinone	(d) p-Nitrophenol
90.	The compound readily reacts with Lucas re	eagent at room temper	ature is
	(a) 2-methyl propanol	(b)2-methyl propane	e-2-01
	(c) 2-butanol	(d) 1-butanol	
91.	The compound which does not reduce Feh	lings solution is	
	(a) formic acid (b) acetaldehyde	(c) benzaldehyde	(d) fructose
92.	The acidity in decreasing order of different	t acids is	
	(a) formic acid > chloroacetic acid > acetic	acid > propanoic acid	

M.Sc. Entrance | BHU 2013

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 14 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in

+91 98369 24983

^{🖀 +91 85829 79309}

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2013

108. Predict the product of the following reaction

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 16 Website: www.aspirationacademy.in Email: info@aspirationacademy.in +91 98369 24983
+91 85829 79309

- **111.** Which aldoses and ketoses form same osazone when treated with excess of phenylhydrazine?
 - (a) D(+)-glucose, D(-)-mannose and D(+)-ribose
 - (b) D(+)-glucose, D(+)-mannose, D(-)-fructose
 - (c) D(+)-glucose, L(+)-arabinose
 - (d) D(+)-glucose, D(-)-arabinose
- **112.** Predict the product of the following reaction

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

- 117. The quantum number which is not derived from the solution of the Schrodinger wave equation for hydrogen atom is
 - (a) azimuthal quantum number (b) principal quantum number
 - (c) magnetic quantum number (d) spin quantum number
- 118. The d-orbital which has a maximum probability density lying along two axes is known as

(a)
$$d_{x^2-y^2}$$
 (b) d_{z^2} (c) d_{xy} (d) d_{xz}

- Which one of the following molecules has the highest bond energy? 119. (c) Br (a) F₂ (b) Cl(d) I_2
- The translational partition function has the unit of 120. (b) 1/V (a) V (c) P (d) a number
- The fundamental relation in Helmholtz free energy (A) and molecular partition 121. function q is

(a)
$$A = NkT \ln q$$

(b) $A = -NkT \ln q$
(c) $A = NkT \sum exp\left(-\frac{\varepsilon_i}{kT}\right)$
(d) $A = -NkT \sum exp\left(-\frac{\varepsilon_i}{kT}\right)$

122. For an ideal monatomic gas, the particle partition function 'q' is

(a)
$$\left(\frac{8\pi mkT}{h^2}\right)^{3/2}$$
 V (b) $\left(\frac{2\pi mkT}{h^2}\right)^{3/2}$ V (c) $\left(\frac{h^2}{8\pi mkT}\right)^{3/2}$ V (d) $\left(\frac{h^2}{2\pi mkT}\right)^{3/2}$ V

If 'v' is the fundamental frequency, μ is the reduced mass and k is the force constant, 123. then for a harmonic oscillator.

(a)
$$k = \frac{1}{2\pi} \sqrt{\frac{v}{\mu}}$$
 (b) $v = 4\pi^2 k^2 \mu$ (c) $v = \frac{1}{2\pi} \sqrt{k/\mu}$ (d) $v = \frac{k}{\mu} \sqrt{1/2\pi}$

124. The Maxwell-Boltzmann distribution function of speed is

(a)
$$f(v) = 4\pi \left(\frac{2\pi kT}{m}\right)^{3/2} v^2 \exp\left(-\frac{2kT}{mv^2}\right) dv$$

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e | 18 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in

***** +91 98369 24983

^{+91 85829 79309}

M.Sc. Entrance | BHU 2013

(b)
$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

(c)
$$f(v) = \frac{2}{\sqrt{\pi}} \left(\frac{2\pi kT}{m}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right) dv$$

(d)
$$f(v) = \frac{2}{\sqrt{\pi}} \left(\frac{m}{2\pi kT}\right)^{1/2} v^2 \exp\left(-\frac{2kT}{mv^2}\right) dv$$

125. The difference between the magnitude of the magnetic fields at which 'free' nuclei and molecular nuclei resonate is called

(a) chemical shift

(c) screening constant

(b) magnetic shift

(b) visible region

(d) anisotropy in g-value

- **126.** When a transition between states of the same multiplicity occurs without emitting light, the process is called
 - (a) fluorescence

(c) quenching

(b) internal conversion (IC)

(d) intersystem crossing (ISC)

- 127. Rotational spectra are observed in the(a) near infrared region
 - (c) far infrared region (d) UV region
- **128.** Which one of the following is adopted as the primary reference electrode, assigned standard electrode, potential equal to zero?
 - (a) Hg / KCl solution (aq) (b) $Cu / CuSO_4$ solution.
 - (c) Ag / AgCl / Cl⁻ (d) -Pt / H₂(g, 1 atm) / H⁺(aq)(a_{H⁺} = 1)
- **129.** The reverse of a photochemical reaction is called
 - (a) chemiluminescence(b) phosphorescence(c) fluorescence(d) photosensitization
 - (c) nuclescence (u) photosensitization
- **130.** A 5.0×10^{-3} M solution of K₂CrO₄ has optical density of 1.5 at 680 mµ using a 10 mm cell. Its extinction coefficient in the unit of L mol⁻¹ cm⁻¹ is:

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

(c) 7.50

ASPIRATION ACADEMY

(b) 300.00

(a) 0.75

р

M.Sc. Entrance | BHU 2013

 $\langle P_1 \rangle$

(d) 30.00

131.	For reversible isothermal expansion of a following statements is correct?	perfect $\left(ext{ideal} ight)$ gas, which particular set of the
	(a) $q > 0$, $w > 0$, $\Delta U = 0$ and $\Delta H = 0$	(b) $q > 0$, $w < 0$, $\Delta U = 0$ and $\Delta H > 0$
	(c) $q > 0$, $w < 0$, $\Delta U = 0$ and $\Delta H = 0$	(d) q > 0, w < 0, $\Delta U < 0$ and $\Delta H = 0$
132.	"Fugacity of a gas in a mixture is equal to of its fugacity in the pure state at a total p with	the product of its mole fraction in the mixture pressure of the mixture." This is in accordance
	(a) Lewis-Randall rule	VA
	(b) Konovalov's first law	C.
	(c) Konovalov's second law	
	(d) Mathematical form of Duhem-Margul	es equation
133.	Which one of the following is not true for	real gases?
	(a) $\Delta G = nRT \ln \left(\frac{f_2}{f_1}\right)$ (b) $\lim_{p \to 0} \left(\frac{f}{p}\right) = 1$	
	$(c) y = \frac{a}{a}$	(d) $\Delta G = nBT \ln \left(\frac{P_2}{P_2}\right)$

- **134.** In osmotic pressure method, molecular mass of polymers can be obtained from the intercept of the graph of
 - (a) π vs C (b) $\left(\frac{\pi}{C}\right)$ vs. C (c) $\frac{C}{\pi}$ vs. C (d) $\frac{C}{\pi}$ vs. \sqrt{C}
- **135.** The half-life of a given reaction was halved as the initial concentration was doubled. What is the order of the reaction?
 - (a) Zero order (b) Pseudo first order
 - (c) Second order (d) Third order
- **136.** Which of the following ions has the highest ionic mobility in aqueous solution?
 - (a) Li^+ (b) Rb^+ (c) Na^+ (d) K^+

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 20 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in +91 98369 24983

^{+91 85829 79309}

137. Which of the following isotherms was successfully explained by Langmuirs unimolecular layer theory?

142. The difference between the potential of the electrode when gas evolution is actually observed and the theoretical reversible potential value for the same reaction is called (a) concentration polarization (b) Overvoltage (c) Dorn effect (d) Sedimentation potential 143. Sulfur can exist in (b) Two phase (c) Three phases (a) One phase (d) Four phases 144. A first-order chemical reaction is 10% complete in 10 minutes. Its half-life is $(\text{given} \log 3 = 0.48)$ (b) 7.5 minutes (c) 95.6 minutes (a) 50.50 minutes (d) 75.2 minutes The half-life of a second-order chemical reaction $2A \rightarrow$ products whose initial 145. concentration was 0.01 mol L^{-1} , was found to be 300 minutes. Its rate constant is (a) $0.36 \mod L^{-1} \min$ (b) 3.6 mol L⁻¹ min (d) $0.036 \text{ mol } \text{L}^{-1} \text{ min}^{-1}$ (c) $0.63 \text{ mol } L^{-1} \text{ min}^{-1}$ For a reversible chemical reaction $A \xrightarrow[k_1]{k_1} X$ in which both the forward and reverse 146. reactions are first order and the initial concentration of A is a_0 and the equilibrium concentrating of X is x_e , the value of k_{-1} in terms of k_1 is given by (a) $k_1(a_0 - x_e)$ (b) $k_1 a / x_e$ (c) $k_1(a_0 - x_e) / x_e$ (d) $k_1 x_e / (a_0 - x_e)$ A consecutive chemical reaction, $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ is first order at both the stages with 147. rate constants as k_1 and k_2 . The time required to attain the maximum concentration of B is given by (a) $\frac{0.693}{(k_1+k_2)}$ (b) $\frac{(\ln k_1 - \ln k_2)}{(k_1+k_2)}$ (c) $\frac{(\ln k_1 + \ln k_2)}{(k_1+k_2)}$ (d) $\frac{(k_1+k_2)}{(k_1-k_2)}$ 148. The energy of activation for the decomposition of NO_2 into NO and O_2 is negative which may be due to one of the following (a) Increase in entropy on decomposition of NO_2 (b) Formation of stable intermediates (c) Formation of free radicals

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)P a g e 22Website: www.aspirationacademy.in | Email: info@aspirationacademy.in

(d) Decrease in enthalpy on formation of NO and O_2 .

- **149.** True activation energy of a unimolecular surface reaction is obtained by measuring the temperature dependence of rate constants at one of the following.
 - (a) Low presures (b) Low temperatures
 - (c) Constant volume (d) High pressures
- **150.** The rate constants, k_1 , k_{-1} and k_2 for the enzyme catalyzed reaction

