

BHU M.Sc. CHEMISTRY ENTRANCE - 2012

1. Example of d^6 complex is

	(a) $\left[Mn(H_2O)_6 \right]^{2+}$	(b) $\left[Fe(H_2 0)_6 \right]^{2+}$	(c) $\left[Cr(H_2O)_6 \right]^{2+}$	$(d) \left[Ti (H_2 O)_6 \right]^{3+}$	
2.	Acidic strength is gr	eater in			
	(a) OH			(d) OH NH ₂	
3.	Cannizzaro reaction	is not given by	L.		
	(a) formaldehyde		(b) acetaldehyde		
	(c) benzaldehyde		(d) trimethylacetald		
4.		constant of a react he enthalpy of reaction		t 327°C is 1×10^{-12} and	
	(a) +54.84 kcal/mole (b) -54.84 kcal/mole				
	(c) 548.4 kcal/mole		d) 5.84 kcal/mole		
5.		al model of atom depe			
	(a) de Broglie equat		(b) Heisenberg unce	ertainty principle	
	(c) Schrodinger wav	e equation	(d) All of the above		
6.	In the cell Zn Zn	$SO_4(1.0 \text{ M}) \text{Fe}^{2+}(1.0 \text{ M}) $	M), Fe ³⁺ (1.0 M) Pt,	given that Fe^{3+} , Fe^{2+} ,	
	$Pt=0.769$ V and Zn^{2+} , $Zn=-0.76$ V, the standard e.m.f. of the cell is				
	(a) 0.76 V	(b) -1.529 V	(c) -0.769 V	(d) 1.529 V	
7.	Ground term symbo	l for $\mathrm{Mn}^{\scriptscriptstyle 2+}(25)$ is			
	(a) ${}^{3}F_{2}$	(b) ² D _{3/2}	(c) ⁶ S _{5/2}	(d) ${}^{5}D_{4}$	

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

9.

- 8. Benzene reacts with methyl chloride in presence of anhydrous AlCl₃ to give toluene. This reaction is called
- (b) Friedel-Crafts reaction (a) alkylation of benzene (d) All of the above (c) methylation reaction Following two compounds are CH₂ CH3 OH HO -OH HO Ċ₂H₅ C₂H₅ (b) diastereomers (d) epimers (a) enantiomers (c) identical Outer electronic configuration of lanthanides is 10. (a) ns^{1} (b) $(n-1)d^{1}$ (c) $(n-1)f^{1-14}ns$ (d) $(n-2)f^{1-14}$ ns² (n
- The variation of molar conductance of strong electrolyte with concentration is shown 11. below

12. If α is the fraction of HI dissociated at equilibrium in the reaction

 $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$

Starting with 2 moles of HI, the total number of moles of reactants and products at equilibrium is

	(a) $2 + 2\alpha$	(b) 2	(c) $1 + \alpha$	(d) $2-\alpha$	
13.	Density of 2.05 M solution of acetic acid in water is 1.02 g/ml. The molality of solution is				
	(a) 3.28 mol/kg	(b) 2.28 mol/kg	(c) 3.24 mol/kg	(d) 1.14 mol/kg	
14.	In a cubic crystal tot	al elements of symme	try are		
	(a) 9	(b) 13	(c) 1	(d) 23	
15.	Lattice energy of sol	ids increases if	T		
	(a) the radii of ions a	are small	(b) the ions are neu	tral	
	(c) charges on the ions are small (d) Medelung's constant decreases				
16.	If the value of radius	ratio $\left(\frac{r^+}{r^-}\right)$ is 0.213,	then coordination num	iber of cation is	
	(a) 2	(b) 4	(c) 3	(d) 6	
17.	Quantized rotationa	l energy of molecule is	s given as		
	(a) $v(r) = D_e \int 1 - ex$	$\exp(\beta(r-r_e))^2$	(b) $\mu_s = -g \times e/2m$	$e^{c} \times \frac{h}{2} \sqrt{S(S+1)}$	
	\star				
	(c) $\epsilon_{\rm J} = J(J+1)h^2/3$	Bπ ² I	(d) $v = \frac{\Delta E}{h} = \frac{\varepsilon_{upper}}{h}$	$\frac{1}{2} \varepsilon_{\text{lower}}$	
18.	The observed chemi	cal shift of a proton is	300 Hz from TMS and	d operative frequency of	
	the spectrometer is 100 MHz. The chemical shift in term fo $\delta(extsf{ppm})$ is				
	(a) 1.5	(b) 4.5	(c) 3.0	(d) 6.0	
19.	The wave function	$\left(\psi ight)$ for hydrogen ato	om in terms of polar	coordinates, is given by	
	$\psi(\mathbf{r}, \theta, \phi) = R(\mathbf{r})\Theta(\theta)\Phi(\theta)$. Which of the functions determines the shape of atomic				

- orbitals?
- (a) R(r) (b) $\Theta(\theta)$ (c) $\Phi(\theta)$ (d) None of these
- **20.** The energy can be represented in terms of partition functions by the following equation

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2012

21. According to Bose-Einstein statistics the probability distribution is given by

(a)
$$\frac{n_i}{g} = \frac{1}{e^{\alpha + \beta \varepsilon_i}}$$
 (b) $\frac{n_i}{g} = \frac{1}{e^{\alpha + \beta \varepsilon_i} - 1}$ (c) $\frac{n_i}{g} = \frac{1}{e^{\alpha + \beta \varepsilon_i} + 1}$ (d) None of these

- **22.** The half-life of radium is 1600 years. After how much time will 1 gm radium reduce to 125 mg?
 - (a) 1800 years (b) 1600 years (c) 3200 years (d) 4800 years
- **23.** The vibrational degrees of freedom for $(i)O_2$, $(ii)N_2O$, $(iii)CH_2O$, $(iv)C_6H_6$, $(v)CHCl_3$ are respectively

- (a) 3, 1, 6, 6, 30 (b) 1, 3, 9, 30, 6 (c) 1, 3, 6, 30, 6 (d) 3, 6, 9, 6, 15
- 24. The shift of an absorption maximum towards longer wavelength is known as
 (a) hhypsochromic effect
 (b) bathochromic effect
 (c) hyperchromic effect
 (d) hypochromic effect

25. The actual value of nuclear spin depends on

- (a) mass number (b) atomic number (c) both (1) and (2) (d) shielding effect
- **26.** The relationship between dihedral angle θ and vicinal coupling constant J_{HH} is given by Karplus equation which is
 - (a) $J_{HH} = 8.5 \cos \phi 0.50$ (b) $J_{HH} = 9.5 \cos \phi 0.30$
 - (c) $J_{HH} = 8.5 \cos^2 \phi 0.28$ (d) $J_{HH} = 3.8 \cos \phi 0.40$
- 27. Centrifugal forces due to rotation of molecule about any given axis tend to
 - (a) increase the moment of inertia about the axis
 - (b) decrease the effective rotational constant
 - (c) both (a) and (b)
 - (d) None of these

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 4 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in

AND A COMPANY A

ASPIRATION ACADEMY

- **28.** Which of the following is correct for photochemical reactions?
 - (a) Temperature has the same effect as on thermal reaction
 - (b) Temperature has opposite effect as on thermal reaction
 - (c) Temperature has no effect in the photochemical reaction
 - (d) None of these
- **29.** Chemisorption first increases and then decreases with increase in temperature becaues

(a)
$$\Delta H = -ve$$
 (b) $\Delta S = -ve$ (c) ε_a is high (d) ε_a is low

30. The gold numbers of A, B, C and D are 0.04, 0.002, 10 and 25 respectively. The protective power of A, B, C and D are

(a) B > A > C > D (b) A > B > C > D (c) D > C > A > B (d) B > A > D > C

- 31. When KCl is heated in an atmosphere of K the violet colour appears which is due to
 (a) the electrons diffuse into the crystal and occupy the vacant sites creasted by Cl⁻ ions
 (b) the electrons diffuse into crystal and occupy the vacant sites
 - (c) the K^+ ions diffuse into the crystal and occupy the vacant sites created by Cl^- ions (d) None of these
- **32.** For a simple cubic system the spacing of (100), (110) and (111) planes are in the ratio of

(a)
$$1:\frac{1}{\sqrt{2}}:\frac{1}{\sqrt{3}}$$
 (b) $\frac{1}{\sqrt{2}}:\frac{1}{\sqrt{3}}:1$ (c) $1:1:1$ (d) $\sqrt{3}:\sqrt{2}:1$

33. Which of the following sets of quantum numbers is correct for an electron of 4f orbital?

(a)
$$n = 4, l = 3, m = +4, s = +\frac{1}{2}$$

(b) $n = 4, l = 4, m = -4, s = -\frac{1}{2}$
(c) $n = 4, l = 3, n = +1, s = +\frac{1}{2}$
(d) $n = 3, l = 2, m = -2, s = +\frac{1}{2}$

- **34.** The ionization energy of hydrogen atom is 13.6 eV. What will be the ionization energy of He^+ ?
 - (a) 13.6 eV (b) 54.4 eV (c) 122.4 eV (d) zero
- **35.** $BaSO_4$ is insoluble in water because

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2012

- (a) hydration energy is equal to lattice energy
- (b) hydration energy is more than lattice energy
- (c) lattice energy is more than hydration energy
- (d) $BaSO_4$ does not form hydrogen bonds with water molecules
- **36.** Which of the following combination of atoms of A and B forms bonding molecular orbitals?
 - (a) $(\psi_{A} \psi_{B})$ (b) $(\psi_{A} + \psi_{B})$ (c) $(\psi_{A} \times \psi_{B})$ (d) $\frac{\psi_{A}}{\psi_{B}}$
- **37.** Which of the following processes involves increasing in bond order?

(a)
$$N_2 \rightarrow N_2^+ + e^-$$
 (b) $CO + e^- \rightarrow CO^-$ (c) $NO \rightarrow NO^+ + e^-$ (d) $O_2 + e^- \rightarrow O_2^-$

- 38. In which slat are the anion cation iso-electronic?(a) LiF(b) NaCl(c) KCl(d) KBr
- 39. Oxygen may be prepared by heating potassium chlorate. What is the other product?
 (a) Potassium oxide
 (b) Potassium chloride
 - (c) Potassium hypochlorite (d) Potassium chlorite
- 40. Radioactive decay of radon produce lead. What would be the other product/products?
 (a) Alpha particles
 (b) Neutrons
 - (c) Neutrons and polonium (d) Alpha particles and polonium
- **41.** From each pair given below identify the ion which is larger in size $\left[\operatorname{Co}^{2_{+}}, \operatorname{Co}^{3_{+}}\right]\left[\operatorname{Fe}^{2_{+}}, \operatorname{Zn}^{2_{+}}\right]\left[\operatorname{Na}^{+}, \operatorname{F}^{-}\right]\left[\operatorname{O}^{2_{-}}, \operatorname{S}^{2_{-}}\right]$

(a)
$$Co^{2+}$$
, Zn^{2+} , F^- , S^{2-} (b) Co^{3+} , Fe^{2+} , Na^+ , S^{2-}

(c) Co^{2+} , Fe^{2+} , F^- , S^{2-} (d) Co^{3+} , Zn^{2+} , Na^+ , O^{2-}

- **42.** Which one, among the given atoms, has the highest number of unpaired electrons in its ground state?
 - (a) C (b) N (c) O (d) F
- **43.** How many unpaired electrons are there in an atom of silver in its ground state?

+91 98369 24983

^{🖀 +91 85829 79309}

M.Sc. Entrance | BHU 2012

	(a) 2 moles	(b) 6 moles	(c) $\frac{1}{3}$ mole	(d) $\frac{1}{6}$ mole		
44.	How many moles of P_4O_{10} will react with one mole of water?					
	(a) 2 moles	(b) 6 moles	(c) 1/3 mole	(d) 1/6 mole		
45.	If 22 g of N_2O_5 reacts with 10 g of water to produce 22 g of nitric acid. What is the percentage yield of nitric acid?					
	(a) 32	(b) 69	(c) 87	(d) 100		
46.	10 ml of 0.10 N sodium hydroxide is added to 20 ml 0.10 N sulphuric acid and the resultant solution is titrated against 0.10 N sodium hydroxide. What will be the titre value at the end point?					
	(a) 5 ml	(b) 10 ml	(c) 20 ml	(d) 30 ml		
47.	An aqueous solution of a substance gives a white precipitate when a few drops of sodium hydroxide are added. The precipitate dissolves when excess of sodium hydroxide is added. The substance may be					
	(a) aluminium sulpha	ate 🖉 🖊 🗖	(b) silver nitrate			
	(c) cadmium chloride (d) mercuric chloride					
48.	When reagent may be used to precipitate barium from aqueous solutions?					
	(a) Hydrochloric acid (b) Sulphuric acid					
	(c) Silver nitrate		(d) Ammonium chlor	fide		
49.	An element crystalliz	es in an FCC lattice. He	ow many atoms are the	ere per unit cell?		
	(a) 1	(b) 2 - KATA	(c) 3	(d) 4		
50.	A non-stoichiometric	oxide of silver has co	omposition Ag _{1.8} 0. W	hat percentage of Ag is		
	present in the form A	Ag ²⁺ ?				
	(a) 11	(b) 14	(c) 20	(d) 25		
51.	A sample of water contains 200 ppm of Ca^{2+} in it. What is the molality of the solution with respect to Ca? (At mass of $Ca = 40$)					
	(a) 0.2 m	(b) 2 m	(c) 5×10^{-3} m	(d) 0.05 m		
52.	What is the charge (1	n) on the silicate ion S	$Si_2O_7^n$?			

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2012

	(a) -2	(b) -4	(c) -6	(d) -7	
53.	Silver is extracted from the crude metal by leaching with a solution of NaCN in the presence of air. The role of NaCN is to				
	(a) oxidize Ag to Ag^+	(b) form the complex	$\left[Ag(CN)_{4} \right]^{3-}$		
	(c) form the complex	$\left[Ag(CN)_{4} \right]^{2-}$	(d) form the complex	$x \left[Ag(CN)_2\right]^{-}$	
54.	CoCl_4^{2-} and $\text{Co}(\text{H}_2\text{O})$	$_{6}^{2+}$ have different color	urs. This is because		
	(a) they have Co in di	fferent oxidation state	es		
	(b) $\operatorname{CoCl}_{4}^{2-}$ is tetrahed	dral while $Co(H_2O)_6^{2+}$	is octahedral		
	(c) they have differen	nt number of unpaired	electrons		
	(d) $\operatorname{CoCl}_4^{2-}$ is square	planar while $Co(H_2O)$	²⁺ is octahedral		
55.	Dimethyloglyoxime r	egent is used to test fo	r E		
	(a) Ca ²⁺	(b) Ni ²⁺	(c) Fe ³⁺	(d) Al ³⁺	
56.	Which molecule has a	zero bond order?			
	(a) H ₂ ⁺	(b) H ₂	(с) НеН	(d) He ₂	
57.	What is the bond order in NO molecule?				
	(a) 2.5	(b) 2	(c) 1.5	(d) 1	
58.	An AB_3 molecule wit	h A as the central aton	n bonded to three B at	oms may have the shape	
		ngle or a trian <u>gular p</u> hnique to distinguish		mong those given, is the ructures?	
Measu	(a) Measurement of c rement of viscosity	lipole moment (d) Measurement of		magnetic moment (c)	
59.	Cul ₂ is unstable beca	ause, it readily decomp	ooses to		
	(a) Cu and I^-	(b) Cu and I_2	(c) CuI and I_2	(d) CuI and I^-	
60.	Which one among th	ne chlorides ZnCl ₂ , H	$gCl_2, BaCl_2, AlCl_3, is$	dissociated to the least	
	extent in aqueous sol				

+91 98369 24983

+91 85829 79309

M.Sc. Entrance | BHU 2012

	(a) ZnCl ₂	(b) HgCl ₂	(c) BaCl ₂	(d) AlCl ₃	
61.	Which one, among the given ions, has the highest polarizing power?				
	(a) Na ⁺	(b) Ca ²⁺	(c) Mg ²⁺	(d) Al^{3+}	
62.	Which compound car	n act as a Lewis acid as	well as a Lewis base?		
	(a) H ₂ 0	(b) SnCl ₂	(c) NH ₃	(d) BF ₃	
63.		U U		re is adopted by several	
	0	me flurides. Which of luoride having the per		formulae; most likely	
	(a) CaTiF ₃	(b) KZnF ₃	(c) CaTiF ₅	(d) CaMgF ₄	
64.		crystal structure. If the ween the cation and an		ngth 4.02 A, what is the	
	(a) 2.01 A	(b) 2.84 A		(d) 4.02 A	
65.	The boron mineral, b number of B in this a		on, $\left[\mathrm{H}_{4}\mathrm{B}_{4}\mathrm{O}_{9}\right]^{2-}$. What	is the formal oxidation	
	(a) 2.5	(b) 3	(c) 3.5	(d) 4	
66.	In its reaction with ac	queous solutions of Cu	\mathbf{u}^{2+} , the cyanide ion is	similar to	
	(a) Co	(b) Cl	(c) I ₂	(d) I ⁻	
67.	Which ligand can lead	t o linkage isomers?	NDI		
	(a) Azide	(b) Cyanate	(c) Oxalate	(d) Nitrate	
68.	If you were to prep	oare $\left[Cr(oxalate)_2 \right]$	$(\mathrm{DH}_2)_2^{-1}$ ion, how matrix	any isomers, including	
	geometrical and optic	cal, can you expect to g	get?		
	(a) Only one	(b) Two	(c) Three	(d) Four	
69.	Two isomers are obta	ained for $Pt(NH_3)_2Cl_2$	2. This is because		
	(a) the two complexe	s differ in the oxidatio	n state of the metal		
	(b) the two complexes differ in the oxidation state of the metal as well as coordination number				

M.Sc. Entrance | BHU 2012

(c) the two complexes differ in their coordination number (d) the two complexes differ in their coordination geometry Consider the following reaction $\left[Co(NH_3)_4 Cl_2 \right]^+ + H_2O \rightarrow \left[Co(NH_3)_4 (H_2O)Cl \right]^{2+} + Cl^{-1}$ 70. The above reaction involves (a) substitution (b) substitution and reduction (c) oxidation (d) substitution and oxidation 71. Identify the acids in the following two reactions $NOF + ClF_3 = NO + ClF_4$ $XeO_3 + OH^- = HXeO_4^-$ (a) ClF_3 and XeO_3 (b) ClF_3 and OH(c) NOF and OH (d) NOF and XeO_{2} What are the formal oxidation states of the iron atoms labelled (A) and (B) in the 72. compound $\operatorname{Fe}_{4}^{(A)} \left[\operatorname{Fe}^{(B)}(CN)_{6} \right]$? (b) $Fe^{(A)}$, 2+ and $Fe^{(B)}$, 4+ (a) $Fe^{(A)}$, 2+ and $Fe^{(B)}$, 3+ (d) $Fe^{(A)}$, 3 + and $Fe^{(B)}$, 2 + (c) $Fe^{(A)}$, 3+ and $Fe^{(B)}$, 3+ The magnetic moment of $\text{Co}(\text{H}_2\text{O})_6^{3+}$ is zero and that of $\text{Mn}(\text{CN})_6^{3+}$ is 2.9 BM. From this 73. it may be concluded that (a) both ions are high spin (b) both ions are low spin (c) $\text{Co}(\text{H}_2\text{O})_6^{3+}$ is low spin, $\text{Mn}(\text{CN})_6^{3-}$ is spin (d) $Co(H_2O)_6^{3+}$ is diamagnetic, $Mn(CN)_6^{3-}$ is high spin 74. Which among the following compounds/ions are diamagnetic? $\operatorname{CuCl}_{6}^{4-}$; $\operatorname{Cu}(\operatorname{SCN})$; $\operatorname{CoCl}_{4}^{2-}$; $\operatorname{Ni}(\operatorname{CO})_{4}$; $\operatorname{PdCl}_{4}^{2-}$ (a) $\operatorname{CoCl}_{4}^{2-}$ and $\operatorname{PdCl}_{4}^{2-}$ (b) $CuCl_{6}^{4-}$, Cu(SCN) and $Ni(CO)_{4-}$

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 10 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in +91 98369 24983
+91 85829 79309

TO MANY LAND

ASPIRATION ACADEMY

79. Twenty millilitres of an aqueous solution of 0.10 M but yric acid is skaken with 10 mL ether. After the layers are separated, it is determined by titration that 0.5 m mol but yric acid remains in the aqueous layer. The distribution

80. In countercurrent distribution, the fraction, $F_{r,n}$, of solute contained in the rth tube after n transfers using equal volumes of the two solvents is given by

(a)
$$F_{r,n} = \frac{\angle n}{\angle r \angle (n-r)} \left(\frac{1}{D+1}\right)^n D^r$$
 (b) $F_{r,n} = \frac{\angle r}{\angle n \angle (n-r)} \left(\frac{1}{D+1}\right)^n D^r$

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2012

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)P a g e 12Website: www.aspirationacademy.in | Email: info@aspirationacademy.in

+91 98369 24983

^{🖀 +91 85829 79309}

M.Sc. Entrance BHU 2012

89. Which is the optimum velocity according to van Deemter plot?

(a)
$$U_{opt} = \sqrt{\frac{B}{C}}$$
 (b) $U_{opt} = \sqrt{\frac{AB}{C}}$ (c) $U_{opt} = \frac{B}{\sqrt{C}}$ (d) $U_{opt} = \frac{\sqrt{B}}{C}$

- 90. Ouadrivalent cerium is widely used in redox titration because
 - (a) it is cheaper
 - (b) it can be easily prepared
 - (c) its aqueous solution is highly stable
 - (d) its aqueous solution can be standardized easily
- 91. If you do not have eriochrome black-T indicator for the complexometric titration of a metal, which following option is left with you?
 - (a) Able to perform titration without indicator
 - (b) Able to perform titration using phenolphthalein
 - (c) Wait until eriochrome black-T is procured
 - (d) Cannot be able to perform titration
- Eriochrome black-T can be used in EDTA titration at pH 7 because 92.
 - (a) end point is indicated by a contrast colour change
 - (b) it is stable at this pH
 - (c) EDTA is stable at this pH
 - (d) buffer of pH7 can easily be prepared
- Ferroin is ferrous complex of 93.

 Mg^{2+} can be precipitated by oxine using mataloxine ratio 94.

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

+91 98369 24983 +91 85829 79309 Page | 1<u>3</u>

M.Sc. Entrance | BHU 2012

100. Aqueous solution of potassium chromate offer a typical example of an apparent deviation from Beer's law which may be attributed to unsymmetrical chemical equilibria

$$2\mathrm{Cr}\mathrm{O}_{4}^{-2} + 2\mathrm{H}^{+} \rightleftharpoons 2\mathrm{H}\mathrm{Cr}\mathrm{O}_{4}^{-} \rightleftharpoons \mathrm{Cr}_{2}\mathrm{O}_{7}^{-2} + \mathrm{H}_{2}\mathrm{O}$$

^{+91 98369 24983}

^{🖀 +91 85829 79309}

(d) 9

(d) $E = E_{Fe}^{\circ} - E_{Ce}^{\circ}$

Predict the condition under which the Beer's law can be obeyed

- (a) Dilute the potassium chromate solution
- (b) Make the strongly alkaline solution of potassium chromate
- (c) Make the moderately alkaline solution of potassium chromate
- (d) Make the neutralized solution (pH7.0) of potassium chromate
- **101.** Potassium bromate in basic solution exhibits an absorption maximum of 372 nm. A basic solution containing 3.00×10^{-5} M KBrO₃ transmits 10% of the incident radiation at 372 nm when it placed in a 1.0 cm. The absorbance of the solution is
- (a) 0 (b) 1 (c) 2 (d) 3 **102.** The pH at the end point for the titration of weak acid is (a) 7 (b) \ge 7 (c) < 7 (d) 0
- **103.** The pH of 10⁻² M NaOH solution is (a) 2 (b) 12 (c) 5
- **104.** In the potentiometric titration of Fe⁺² with Ce⁺⁴, the equivalence point potential an be computed as

INC

(a)
$$E = E_{Fe}^{\circ} + E_{Ce}^{\circ}$$
 (b) $E = \frac{E_{Fe}^{\circ} + E_{Ce}^{\circ}}{2}$ (c)

- **105.** Chloramine-T acts as if it
 - (a) a metallochromic-indicator
 - (b) a pH-indicator
 - (c) a highly reactive sodium sodium hypochlorite
 - (d) a redox-indicator
- **106.** The molar absorptivity has the unit
 - (a) $L \mod cm^{-1}$ (b) $L^{-1} \mod^{-1} cm$ (c) $L \mod^{-1} cm^{-1}$ (d) No unit
- **107.** In the isotropic dilution method
 - (a) known weight of isotropically labelled species is mixed with the sample
 - (b) any amount of isotropically labelled species is mixed with the sample
 - (c) half of the sample amount is mixed with the isotropically labelled species

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

(d) dilution is necessary with water 108. Which one is pertinent receptor of photochemical smog? (a) Ocean (b) Plant (c) Soil (d) Man Which one is sink of CO_2 ? 109. (a) Soil (b) Ocean (c) Plant (d) Air 110. Which one is contaminant? (b) Mercury (c) SO_{2} (d) Chlorine (a) CO 111. Which one is more toxic? (d) $(CH_3)_2$ Hg (b) Hg^2 (a) Hg (c) Hg 112. What happens when there is rise in CO_2 emission in the air? (a) Global warming (b) Global cooling (c) Storm (d) Acid rain The major organic product in the following reaction is 113. NBS CH_2 CC1₄ Δ Br CH₂Br CH₂ TOLKA (a) (b) CHBr Br (c) (d) None of these An $S_N 2$ reaction at an asymmetric carbon atom of a dextro alkyl halide always gives a 114. (a) laevo product (b) racemic mixture (c) single optically active isomer (d) dextro product 115. Aqueous solution of phenol is known as (a) benzoic acid (b) carbolic acid (c) phenoxide (d) None of these

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)P a g e 16Website: www.aspirationacademy.in | Email: info@aspirationacademy.in

+91 98369 24983
+91 85829 79309

116. What happens when 1-naphthalenesulphonic acid is heated in sulphuric acid at 160°C?

(a) Naphthalenesulphonic acid is obtained in major amount

(b) A mixture of 2-naphthalenesulphonic acid and naphthalene-1, 2-disulphonic acid is obtained

- (c) Naphthalene-1, 2-disulphonic acid is obtained in major amount
- (d) 1-Naphthalenesulphonic acid is recovered
- 117. Clemmenson's reduction will convert cyclohexanone into

- (a) electrophilic addition (b) nucleophilic addition
 - (c) free radical addition (d) electrophilic substitution
- **121.** An alkene on ozonolysis gives two moles of glyoxal and two moles of methanol. The molecular formula of alkene is

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2012

	(a) $C_6 H_8$	(b) C ₈ H ₁₂	(c) $C_8 H_{14}$	(d) $C_7 H_{10}$		
122.	Out of the following name reactions which gives unsymmetrical alkane?					
	(a) Wurtz reaction		(b) Corey-House re	action		
	(c) Decarboxylation	reaction	(d) Frankland react	ion		
123.	Consider the follow	ing carbocations				
	$(A)C_6H_5CH_2^+$	$(B)C_6H_5CH_2CH_2^+$	$(C)C_6H_5CH^+CH_3$	$(D)C_6H_5CH^+(CH_3)_2$		
	(a) A, B, C, D	(b) B, C, A, D	(c) D, C, A, B	(d) D, C, B, A		
124.	Hypsochromic effec	t is also known as	T			
	(a) red shift	101	(b) blue shift			
	(c) bathochromic sh	lift	(d) None of these			
125.	Fenton's reagent is	used in				
	(a) mutarotation		(b) Killiani-Fischer	synthesis		
	(c) Ruff degradation		(d) Wohl degradati	on		
126.	When 2-chloro-2-methylbutane is refluxed with alcoholic KOH, the main product obtained is					
	(a) $(CH_3)_2 C = CHCH_3$ (b) $(CH_3)_2 C(OH)CH_2CH_3$					
	(c) $CH_2 = C(CH_3)C$	H ₂ CH ₃	(d) $(CH_3)_3 CCH_2 OH_3$	ι//		
127.	Which of the following is a polyamide molecule?					
	(a) Terylene	(b) Rayon	(c) Polystyrene	(d) Nylon 6		
128.	Which one of the following pairs can be distinguished by Fehling solution?					
	(a) Glucose and Fru	ctose	(b) Glucose and Ma	nnose		
	(c) Fructose and Suc	crose	(d) Maltose and Glu	cose		
129.	Piperine on hydroly	Piperine on hydrolysis with KOH gives				
	(a) piperidine and p	iperic acid and this sh	lows the presence of a	n amide group		
	(b) piperidine and p	piperic acid and this sh	nows the presence of a	n ester group		
	(c) pyridine and pip	eric acid and this show	ws the presence of an a	amide group		
	(d) pyridien and pip	peric acid and this sho	ws the presence of an	ester group		

+91 98369 24983
+91 85829 79309

- 130. Which of the following statements is correct? (a) Citral-a is also known as geranial and exists in Z form (b) Citral-a is also known as geranial and exists in E form (c) Citral-a is also known as neral and exists in E form (d) Citral-a and citral-b represent the same compound 131. Which of the following rearrangements involves nitrene as intermediate (a) Beckmann (b) Hofmann (d) Pinacol-pinacolone (c) Baever-Villiger Preferred conformations of cyclohexane and methylcyclohexane, repectively are 132. (a) chair and chair with equatorial methyl (b) chair and chair with axial methyl (c) boat and chair with equatorial methyl (d) boat and boat with equatorial methyl Propiophenone on reaction with phenylhydrazine followed by treatment with ZnCl₂ 133. gives (a) 2-propylindole (b) 2-propionylindole (d) 2-methylindole (c) 2-ethylindole The correct order of migratory aptitude of the froups in Baeyer-Villiger oxidation is 134. (a) phenyl > p-chlorophenyl > p-methoxyphenyl > p-hydroxyphenyl (b) p-chlorophenyl > p-methoxyphenyl > p-hydroxyphenyl > phenyl (c) p-methoxyphenyl > p-hydroxyphenyl > phenyl > p-chlorophenyl (d) p-hydroxyphenyl > phenyl > p-methoxyphenyl > p-chlorophenyl 135. An aqueous solution of D-glucose in equilibrium contains (a) α – and β – anomers in equal amounts (b) α – anomer in major amount and β – anomer in minor amount (c) α – anomer in minor amount and β – anomer in major amount
 - (d) $\alpha and \beta anomers in variable amounts$

136. The Chichibabin reaction of pyridine gives

(a) 2-aminopyriding in good yield along with trace amount of 4-aminopyridine(b)2-aminopyriding in good yield along with trace amount of 3-aminopyridine4-aminopyriding in good yield along with trace amount of 2-aminopyridine(d)4-aminopyridine(d)(d)4-

137. Bakelite is obtained from phenol by the reacting with

	(a) HCHO	(b) CH ₃ OH	(c) CH ₃ CHO	(d) CH ₃ COCH ₃	
138.	Which synthesis can	be applied for quino li	ne?		
	(a) The Skraup synth	lesis only			
	(b) The Bischler-Nep	ieralski and Skraup sy	nthesis		
	(c) The Pomeranz-Fritsch synthesis only				
	(d) The Skraup and I	riedlander synthesis			
139.	Hofmann's exhaustiv	e methylation of piper	ridine gives		
	(a) 1, 4-pentadiene		(b) 1, 3-pentadiene		
	(c) 1, 3-butadiene		(d) 1, 3-cyclopentadi	iene	
140.	Which of the following is an auxochrome?				
	(a) $C = C$	(b) -CO-	(c) $-C_6H_5$	(d) –NH ₂	
141.	Isoelectric point is th	e point, where concen	itration of dipolar ion/i	is	
	(a) minimum	TOLKATA	(b) maximum		
	(c) intermediate	TAIA	(d) Can be of any val	ue	
142.	Plexiglass is a comm	ercial name of			
	(a) Polyacylonitrille		(b) glyptal		
	(c) polymethylmetha	lcryl	(d) polyethylmethac	ryl	
143.	Which amine will be quinoline	e used as starting ma	iterial in the Pictet-Sp	pengler synthesis of iso	
	(a) Benzylamine		(b) Aniline		
	(c) 2-Phenylethylam	ine	(d) 2-Propylamine		

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) P a g e 20 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in +91 98369 24983

^{🖀 +91 85829 79309}

- **144.** What will be the effect on the rate of S_N^2 type reaction if the concentration of MeI is doubled and that of OH⁻ is halved?
 - (a) The rate becomes 2 times faster
- (b) The rate becomes 4 time faster
- (c) The rate becomes half (d) No change in the rate
- 145. Using given codes, arrange the following compounds in decreasing order of the rate of solvolysis by $S_N 1$ mechanism

- **149.** A nonapetide undergoes partial hydrolysis to give peptides whose amino acid compositions are shown (A-H). Reaction of intact nonapeptide with Edman's reagent releases PTH-Leu. What is the sequence of the nonapeptide?
 - (A) Pro, Ser (B) Gly, Glu
 - (C) Met, Ala, Leu (D) Gly, Ala
 - (E) Glu, Ser, Val, Pro (F) Glu, Pro, Gly

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

M.Sc. Entrance | BHU 2012

(G) Met, Leu (H) His, Val (a) Leu-Met-Ala-Gly-Glu-Pro-Ser-Val-His (b) Leu-Ala-Met-Gly-Glu-Pro-Ser-Val-His (c) Leu-Met-Ala-Glu-Gly-Pro-Ser-Val-His ACAS (d) Leu-Met-Ala-Gly-Glu-Pro-Ser-His-Val 150. Which is least aromatic? Thiophene (d) Benzene (b) Furan (a) Pyrrole * TOLKATA, INDIA

South Kolkata:30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro, GATE No. 3)North Kolkata:47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro, GATE No. 3)P a g e 22Website:www.aspirationacademy.inEmail:Info@aspirationacademy.in

+91 98369 24983
+91 85829 79309