1. The rate of hydrolysis of an ester, catalyzed by strong acid, is almost doubled when pH is changed from 0.80 to 0.50 . Justify whether this is an example of homogeneous catalysis.

Hints: The rate of hydrolysis of ester $=\mathrm{K}[$ Ester $]\left[\mathrm{H}^{+}\right]$
Since $[\mathrm{H}+]=$ constant during reaction.
Rate $=\mathrm{K}[$ Ester $]$
When $\mathrm{pH}=0.80 ; \quad\left[\mathrm{H}^{+}\right]_{2}=10-.080=0.158$
When $\mathrm{pH}=0.50 ; \quad\left[\mathrm{H}^{+}\right]_{1}=10^{-0.5}=0.316$
$\mathrm{R}_{1}=\mathrm{K}_{1}$ [Ester]
$\mathrm{R}_{2}=\mathrm{K}_{2}$ [Ester]
R_{1}, R_{2}, are the rate of hydrolysis at two different concentrations.
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\left[\mathrm{H}^{+}\right]_{1}}{\left[\mathrm{H}^{+}\right]_{2}}=\frac{0.316}{0.158}=2$
\therefore The rate of hydrolysis is almost doubled when concentration of acid is almost doubles. Hence it is a case of homogeneous catalysis.
2. For the elementary reaction $\mathbf{A}+\mathbf{B} \xrightarrow{k} 2 C$, express $d[A] / d t$ and $d[C] / d t$ in terms of:
(i) the reaction rate (r)
(ii) rate constant (k) and the molar concentrations of A and B.

Hints: (i) Rate $\mathrm{r}=-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}[\mathrm{c}]}{\mathrm{dt}}$
(ii) $\frac{-\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=K[\mathrm{~A}]^{\alpha}[\beta]^{\beta}$ (For elementary reaction order and molecularity must be same)
and $\frac{1}{2} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}=\mathrm{K}[\mathrm{A}][\mathrm{B}] \Rightarrow \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=2 \mathrm{~K}[\mathrm{~A}][\mathrm{B}]$
3. "Increase of temperature invariably increases the rate of reaction". Justify or criticize.

Hints: From Arrhenius equation: $\frac{d \ln K}{d T}=\frac{E_{a}}{R T_{2}}$
If $\mathrm{E}_{\mathrm{a}}=+\mathrm{ve}$, then with increasing temperature rate constant increases.
If $\mathrm{E}_{\mathrm{a}}=0$; then rate constant does not change with temperature.
If a reversible intermediate step is involved in reaction then, $\frac{d \ln \mathrm{~K}_{\mathrm{eq}}}{\mathrm{dT}}=\frac{\Delta \mathrm{H}}{\mathrm{RT}^{2}}$
And when $\Delta \mathrm{H}=(-)$ ve i.e for exothermic reaction, with increasing temperature $K_{\text {eq }}$ decreases and both the rate of forward and backward reaction decreases with increasing temperature. Therefore, overall rate constant decreases with increasing temperature. But for endothermic reaction ($\Delta \mathrm{H}=$ positive), rate increases with increasing temperature.
4. The initial-rate data for decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ (g) at $55^{\circ} \mathrm{C}$ are as follows :
[$\left.\mathrm{N}_{2} \mathrm{O}_{5}\right] /(\mathrm{M})$
Initial rate / (M.s ${ }^{-1}$)
0.02
3.4×10^{-5}
0.05
8.5×10^{-5}

Find the rate law and the rate constant for this reaction.

Hints:
$-\frac{\mathrm{d}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{\alpha}$
$\alpha=$ order of reaction
$3.4 \times 10^{-5} \mathrm{Ms}^{-1}=\mathrm{K}(0.02 \mathrm{M})^{\alpha}$
$8.5 \times 10^{-5} \mathrm{Ms}^{-1}=\mathrm{K}(0.05 \mathrm{M})^{\alpha}$
(2) $\div(1) ;\left(\frac{8.5}{3.4}\right)=\left(\frac{0.05}{0.02}\right)^{\alpha}$

$$
(2.5)^{-1}=(2.5)^{\alpha}
$$

i.e., $\quad \alpha=1$ ($1^{\text {st }}$ order reaction)
now, From equation (i)
$3.4 \times 10^{-5} \mathrm{Ms}^{-1}=\mathrm{K}(0,02 \mathrm{M})^{1}$
$\therefore \mathrm{K}=\frac{3.4 \times 10^{-5} \mathrm{Ms}^{-1}}{0.02 \mathrm{M}}$
$\therefore \mathrm{K}=1.7 \times 10^{-3} \mathrm{~s}^{-1}$
5. What is "homogeneous catalysis"? Give one example.

Hints: A catalyst is defined as a substance which increases the rate of reaction without undergoing any change and the phenomenon is known as catalysis. In homogeneous catalysis reactants and catalyst are in same phase
e.g $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{NO}(\mathrm{g})} 2 \mathrm{SO}_{3}(\mathrm{~g})$
6. Sucrose is hydrolyzed to glucose and fructose in presence of \mathbf{H}^{+}as catalyst. At any initial concentration of sucrose the half-lives at $\mathbf{p H}=5$ and $\mathbf{p H}=4$ are 500 min and 50 min respectively. Find out the values of the exponents a and b in the rate law expression :
-d[sucrose] $/ \mathbf{d t}=\mathrm{K}[\text { sucrose }]^{\mathrm{a}}\left[\mathrm{H}^{+}\right]^{\mathrm{b}}$
Hints: From the given data, it is evident that the half life period of the reaction is independent of initial concentration of sucrose. Thus, the order with respect to sucrose is 1 . Hence, $a=1$.

From the given data, half life is inversely proportional to the H^{+}ion concentration.

aspiratioñacaoemr
dream high, beyond the sky
Best Institute for IITJAM | CSIR NET | GATE [NEET |JEE

C.U: 2014

7. A certain first order reaction is 20% complete in 15 minutes at $27^{\circ} \mathrm{C}$, but for the same extent of reaction at $37^{\circ} \mathrm{C}$, only 5 minutes are required. Calculate activation energy of the reaction.

Hints: \quad At $27^{\circ} \mathrm{C} \mathrm{K}=\frac{1}{\mathrm{t}} \ln \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}$

$$
=\frac{1}{15} \ln \frac{100}{80}=0.0148 \mathrm{~min}^{-1}
$$

At $37^{\circ} \mathrm{C}, \mathrm{K}=\frac{1}{5} \ln \frac{100}{80}=0.0446 \mathrm{~min}^{-1}$
From Arrhenius equation,

$$
\begin{aligned}
& \ln \frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left[\frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right] \mathrm{T}_{1}>\mathrm{T}_{2} \\
\Rightarrow & \ln \frac{\mathrm{~K}_{37^{\circ} \mathrm{C}}}{\mathrm{~K}_{27^{0} \mathrm{C}}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left[\frac{310-300}{300 \times 310}\right] \\
\Rightarrow & \ln \frac{0.0446}{0.0148}=\frac{\mathrm{E}_{\mathrm{a}}}{1.987}\left[\frac{10}{93000}\right] \\
\Rightarrow & 1.103=\mathrm{E}_{\mathrm{a}} \times 5.41 \times 10^{-5} \\
\therefore & \mathrm{E}_{\mathrm{a}}=\frac{1.103}{5.41 \times 10^{-5}}=20425.925 \mathrm{Kcal} .
\end{aligned}
$$

8. With a suitable example illustrate the pH dependence of enzyme catalysed reactions.

Hints: Active centre of enzyme can exist in three states of ionization -

$\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$ are dissociation constants. Each of the three forms interacts with substrate and resulting enzyme substrate complex can also exist in three forms. It is postulated that [EHS] is only form that can give rise to product, the reaction scheme is then -

The pH behaviour can be explained by postulating that the intermediate, zwitter-ion, form is enzymically active, but that the species to the left and right are inactive. The concentration of the intermediate form goes through a maximum as the pH is varied, so the rate passes through a maximum.
9. A gas decomposes according to second order kinematics. When the initial pressure is $\mathbf{5 0 0}$ torr, $\mathbf{4 0 \%}$ decomposition occurs in $\mathbf{3 0}$ min. Find out the
aspiratioñacaoemr
dream high, beyond the sky
Best Institute for IIT JAM | CSIR NET | GATE | NEET | JEE
time required for 75% decomposition of the gas and the value of the rate constant.

Hints: The specific rate constant for $2^{\text {nd }}$ order reaction is given by -

$$
\mathrm{k}=\frac{1}{\mathrm{t}} \cdot \frac{\mathrm{x}}{\mathrm{a}(\mathrm{a}-\mathrm{x})}
$$

Here ' t ' is the time when the amount of decomposition is ' x ' and ' a ' is the initial amount. By the problem,

$$
\begin{aligned}
\mathrm{k} & =\frac{1}{30} \cdot \frac{0.4 \times \mathrm{a}}{\mathrm{a} \times(\mathrm{a}-0.4 \mathrm{a})} \\
& =\frac{1}{30} \times \frac{0.4 \mathrm{a}}{\mathrm{a} \times 0.6 \mathrm{a}}
\end{aligned}
$$

$\therefore \mathrm{k}=\frac{1}{30} \times \frac{0.4}{0.6 \times 500}$ torr $^{-1} \cdot \mathrm{~min}^{-1}$

$$
=4.44 \times 10^{-5} \text { torr }^{-1} \mathrm{~min}^{-1}
$$

$\therefore \mathrm{t}_{\frac{3}{4}}=\frac{1}{\mathrm{k}} \cdot \frac{0.75 \mathrm{a}}{\mathrm{a} \times 0.25 \mathrm{a}}=\frac{1}{\mathrm{k}} \cdot \frac{3}{\mathrm{a}}=\frac{1}{4.44 \times 10^{-5}} \times \frac{3}{500}=135.135 \mathrm{~min}$
10. Draw the rate versus time profiles for (i) a zero order reaction (ii) a first order reaction.

Hints:

(i) For Zero order reaction

(ii) For first order reaction

11. At what value of K_{M} does the rate of an enzyme catalysed reaction obeying Michaelis-Menten Kinematics become one-fourth of its maximum value?

Hints: $\quad r_{0}=\frac{r_{\text {max }}[\mathrm{s}]_{0}}{1+\mathrm{K}_{\mathrm{M}}}$

$$
\begin{aligned}
& \frac{\mathrm{r}_{0 \text { max }}}{4}=\frac{\mathrm{r}_{0 \text { max }}[\mathrm{s}]_{0}}{[\mathrm{~s}]_{0}+\mathrm{KM}} \\
& {[\mathrm{~s}]_{0} \mathrm{r}_{0 \text { max }}+\mathrm{K}_{\mathrm{M}} \cdot \mathrm{r}_{\mathrm{o} \text { max }}=4 \mathrm{r}_{0 \text { max }}[\mathrm{s}]_{0}} \\
& {[\mathrm{~s}]_{0}+\mathrm{K}_{\mathrm{M}}=4[\mathrm{~s}]_{0}} \\
& \quad \mathrm{~K}_{\mathrm{M}}=3[\mathrm{~s}]_{0}
\end{aligned}
$$

Км is 3 times of initial substrate concentration.
12. Considering the parallel reaction : $A \xrightarrow{k_{1}} B \& A \xrightarrow{k_{2}} C$, In an experiment, it was found that 60% decomposition of A takes places in 20 minutes and analysis of product showed that B and C are in $3: 1$ ratio. Calculate k_{1} and \mathbf{k}_{2}.

Hints: By the problem, $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=3 \quad \mathrm{~K}_{1}=3 \mathrm{~K}_{2}$
For parallel reaction: $K_{1}+K_{2}=\frac{1}{t} \ln \frac{a}{a-x}$

$$
\begin{aligned}
& 3 \mathrm{k}_{2}+\mathrm{K}_{2}=\frac{1}{20} \ln \frac{\mathrm{a}}{\mathrm{a}-0.6 \mathrm{a}} \\
& 4 \mathrm{~K}_{2}=\frac{1}{20} \ln \frac{1}{0.4} \quad \therefore \mathrm{~K}_{2}=0.0114 \mathrm{~min}^{-1}
\end{aligned}
$$

$\mathrm{K}_{1}=3 \mathrm{~K}_{2}=3 \times 0.0114=0.0342 \mathrm{~min}^{-1}$

C.U: 2015

13. Show that a unimolecular process behaves kinetically as second-order at low reactant concentrations.

Hints: See Lindemann's theory (NOT IN SYLLABUS NOW)
14. A sample of milk kept at $25^{\circ} \mathrm{C}$ is found to sour 40 times as rapidly as when it is kept at $4^{\circ} \mathrm{C}$. Estimate the activation energy for the souring process.
dream high, beyond the sky
Best Institute for IIT JAM | CSIR NET | GATE |NEET |JEE

Hints: $\quad \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=40 ; \quad \mathrm{T}_{2}=298 \mathrm{~K} ; \quad \mathrm{T}_{1}=277 \mathrm{~K}, \quad \mathrm{E}_{\mathrm{a}}=$?
$\ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$
$\mathrm{E}_{\mathrm{a}}=\frac{\mathrm{R} \cdot \ln \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)}{\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)}=\frac{8.314 \ln 40}{\left(\frac{1}{277}-\frac{1}{298}\right)}$
$\mathrm{E}_{\mathrm{a}}=\frac{8.314 \ln 40}{2.544 \times 10^{-4}}=12.07 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1}$
15. Draw the graph of concentration versus time of three species A, B, C undergoing the first-order consecutive reactions : $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$ under the conditions (i) $k_{1} \approx k_{2}$, (ii) $k_{1} \gg k_{2}$ (iii) $k_{1} \ll k_{2}$.

Hints:

16. In the reaction $\mathrm{AB}_{2} \mathrm{X}_{2} \rightarrow \mathrm{AB}_{2}+\mathrm{X}_{2}$, the rate constant is $2.28 \times 10^{-5} \mathbf{s}^{\mathbf{- 1}}$ at $320^{\circ} \mathrm{C}$. What fraction of the sample $\mathrm{AB}_{2} \mathrm{X}_{2}$ would decompose by heating it at $320^{\circ} \mathrm{C}$ for 2 hours?

Hints: $\mathrm{t}=\frac{1}{\mathrm{~K}} \ln \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}$
By the problem, $\mathrm{K}=2.28 \times 10^{-5} \mathrm{~s}^{-1}$

$$
\mathrm{t}=2 \mathrm{hrs}=2 \times 60 \times 60 \mathrm{sec}
$$

$\therefore 2 \times 60 \times 60=\frac{1}{2.28 \times 10^{-5}} \ln \frac{a}{a-x}$
$\ln \frac{a}{a-x}=0.16416$
$\frac{a}{a-x}=1.178402844$
$\frac{a-x}{a}=0.848606234$
$1-\frac{x}{a}=0.8486$
$\frac{\mathrm{x}}{\mathrm{a}}=1-0.8486=0.1514$
So, the percentage is $0.1514 \times 100=15.14$
17. How does the time required for a first-order reaction to go $\mathbf{9 9 \%}$ completion relate to half-life of the reaction?

Hints: For $1^{\text {st }}$ order reaction $t=\frac{2.303}{K} \log \frac{a}{a-x}$
When 99\% complete, then $\mathrm{x}=0.99 \mathrm{a}$
$\mathrm{t}_{0.99}=\frac{2.303}{\mathrm{~K}} \log \frac{\mathrm{a}}{\mathrm{a}-0.99 \mathrm{a}}$
$=\frac{2.303}{\mathrm{~K}} \log \frac{\mathrm{a}}{0.01 \mathrm{a}}=\frac{2.303}{\mathrm{~K}} \log (100)$
$\mathrm{t}_{0.99}=\frac{2.303 \times 2}{\mathrm{k}}$
Again $t_{0.5}=\frac{2.303}{K} \log \frac{a}{a-0.5 a}$

$$
=\frac{2.303}{\mathrm{~K}} \log 2=\frac{2.303 \times 0.3010}{\mathrm{~K}}
$$

$$
\frac{t_{0.99}}{t_{0.5}}=\frac{2.303 \times 2}{\mathrm{~K}} \times \frac{\mathrm{K}}{2.303 \times 0.301}=6.43 \simeq 6.5 \text { times. }
$$

18. Draw the following plots and state the values of the slope and the intercept for each : (i) log (rate) versus log (reactant concentration) for an n-th order process, (ii) \log (initial rate) versus \log (substrate concentration) at low substrate concentrations for an enzyme catalysed reaction, and (iii) \log (rate constant) versus pH for a specific acid catalysed process.

Hints: (i) For $\mathrm{n}^{\text {th }}$ order reaction - rate $(\mathrm{r})=\mathrm{K}[\mathrm{A}]^{\mathrm{n}}$

$$
\log r=\log K+n \log [A]
$$

(ii) For enzyme catalysed reaction,

$$
\mathrm{r}_{0}=\frac{\mathrm{K}[\mathrm{E}]_{0}[\mathrm{~s}]_{0}}{\mathrm{~K}_{\mathrm{M}}+[\mathrm{s}]_{0}}
$$

At low substrate concentration $\mathrm{K}_{\mathrm{M}} \gg[\mathrm{s}]_{0}$

$$
\mathrm{r}_{0}=\frac{\mathrm{k}[\mathrm{E}]_{0}[\mathrm{~s}]_{0}}{\mathrm{~K}_{\mathrm{M}}}=\mathrm{k}^{\prime}[\mathrm{s}]_{0} \quad\left[\mathrm{k}^{\prime}=\frac{\mathrm{k}[\mathrm{E}]_{0}}{\mathrm{~K}_{\mathrm{M}}}\right]
$$

$\log \mathrm{r}_{0}=\log \mathrm{K}^{\prime}+\log [\mathrm{s}]_{0}$
(iii) Rate constant of specific acid catalysed process
$\mathrm{K}=\mathrm{KH}^{+}\left[\mathrm{H}^{+}\right]$
$\log \mathrm{K}=\log \mathrm{K}_{\mathrm{H}^{+}}+\log \left[\mathrm{H}^{+}\right]$
$\log \mathrm{K}=\log \mathrm{K}_{\mathrm{H}^{+}}-\mathrm{pH}$

