1SP/T【1 O ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE

IIT JAM 2018

SECTION - I

1. $\mathrm{NaF}, \mathrm{KF}, \mathrm{MgO}$ and CaO are crystalline solids. They have NaCl structure. Their lattice energies vary in the order
(A) $\mathrm{NaF}<\mathrm{KF}<\mathrm{MgO}<\mathrm{CaO}$
(B) $\mathrm{KF}<\mathrm{NaF}<\mathrm{CaO}<\mathrm{MgO}$
(C) $\mathrm{MgO}<\mathrm{CaO}<\mathrm{NaF}<\mathrm{KF}$
(D) $\mathrm{CaO}<\mathrm{MgO}<\mathrm{KF}<\mathrm{NaF}$
2. The number of crystal system and the number of Bravais lattices are, respectively,
(A) 14 and 7
(B) 7 and 32
(C) 32 and 14
(D) 7 and 14
3. The value of integral $\int_{-2}^{+2} \mathrm{xe}^{-2 x^{2}} \mathrm{dx}$ is
(A) 0
(B) $\frac{1}{2}$
\square
(C) 1
(D) 2
4. Carbonic anhydrase is an example of
(A) Hydrolysis enzyme
(B) Redox enzyme
(C) O_{2} transport protein
(D) Heme protein
5. For adsorption of a gas on a solid surface, the plot that represents Freundlich isotherm is $(\mathrm{x}=$ mass of gas, $\mathrm{m}=$ mass of adsorbent, $\mathrm{P}=$ pressure $)$
(A)

(C)

$|\log \mathrm{P}|$
(D)

6. The compound that contains the most acidic hydrogen is

ASPIRPTOO ACADEMY $^{\text {ACAD }}$
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE | NEET |JEE
(A) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
(B) $\mathrm{CH} \equiv \mathrm{CH}$
(C) $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
(D) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
7. The major product formed in the following reaction is

(A)

(C)

(D)

8. The CORRECT order of melting points of group 15 trifluorides is
(A) $\mathrm{PF}_{3}<\mathrm{AsF}_{3}<\mathrm{SbF}_{3}<\mathrm{BiF}_{3}$
(B) $\mathrm{BiF}_{3}<\mathrm{SbF}_{3}<\mathrm{PF}_{3}<\mathrm{AsF}_{3}$
(C) $\mathrm{PF}_{3}<\mathrm{SbF}_{3}<\mathrm{AsF}_{3}<\mathrm{BiF}_{3}$
(D) $\mathrm{BiF}_{3}<\mathrm{AsF}_{3}<\mathrm{SbF}_{3}<\mathrm{PF}_{3}$
9. The $\mathrm{C}-2$ epimer of D -glucose is
(A)D-Mannose
(B) D-Fructose
(C) D-Galactose
(D) D-Gulose
10. On hydrolysis, aluminium carbide produces
(A) CH_{4}
(B) $\mathrm{C}_{2} \mathrm{H}_{6} A T(\mathrm{C}) \mathrm{C}_{2} \mathrm{H}_{4}$
(D) $\mathrm{C}_{2} \mathrm{H}_{2}$
11. With respect to periodic properties, the CORRECT statement is
(A) Electron affinity order is $\mathrm{F}>\mathrm{O}>\mathrm{Cl}$
(B) First ionisation energy order is $\mathrm{Al}>\mathrm{Mg}>\mathrm{K}$
(C) Atomic radius order is $\mathrm{N}>\mathrm{P}>\mathrm{As}$
(D) Ionic radius order is $\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}$
12. Among the following metal carbonyl species, the one with the highest metalcarbon back bonding is
(A) $\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$
(B) $\left[\mathrm{V}(\mathrm{CO})_{6}\right]$
(C) $\mathrm{Cr}(\mathrm{CO})_{6}$
(D) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$

[^0]dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
13. With reference to the variation of molar conductivity $\left(A_{m}\right)$ with concentration for a strong electrolyte in an aqueous solution, the CORRECT statement is
(A) The asymmetry effect contributes to decrease Λ_{m} whereas the electrophoretic effect contributes to increase Λ_{m}
(B) The asymmetry effect contributes to increase Λ_{m} whereas the electrophoretic effect contributes to decrease Λ_{m}
(C) Both asymmetry effect and electrophoretic effect contribute to decrease Λ_{m}
(D) Both asymmetry effect and electrophoretic effect contribute to increase Λ_{m}
14. The CORRECT order of carbonyl stretching frequencies for the following compound is

(I)

(II)

(III)

(IV)
(A) II $<$ I $<$ III $<$ IV
(B) I $<$ III $<$ II $<$ IV
(C)IV $<$ II
III
$<$ (D) $\mathrm{III}<\mathrm{IV}<\mathrm{II}<\mathrm{I}$
15. The reaction, $A \rightarrow$ Products, follows first-order kinetics. If [A] represents the concentration of reactant at time t, the INCORRECT variation is shown in
(A)

(C)

(B)

16. The behaviour of Cl_{2} is closest to ideal gas behaviour at
(A) $100^{\circ} \mathrm{C}$ and 10.0 atm
(B) $0^{\circ} \mathrm{C}$ and 0.50 atm
(C) $200^{\circ} \mathrm{C}$ and 0.50 atm
(D) $-100^{\circ} \mathrm{C}$ and 10.0 atm

ASPIRRTO TACADEMY
dream high, beyond the sky
Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
17. The decay modes of ${ }^{14} \mathrm{C}$ and ${ }^{14} \mathrm{O}$ are
(A) β^{-}decay
(B) Positron emission
(C) β^{-}decay and positron emission, respectively
(D) Positron emission and β^{-}decay, respectively
18. A vector $\vec{A}=\vec{i}+x \vec{j}+3 \vec{k}$ is rotated through an angle and is also doubled in magnitude resulting in $\vec{B}=4 \vec{i}+(4 x-2) \vec{j}+2 \vec{k}$. An acceptable value of x is
(A) 1
(B) 2
(C) 3
(D) $4 / 3$
19. The CORRECT expression that corresponds to reversible and adiabatic expansion of an ideal gas is
(A) $\Delta U=0$
(B) $A H=0$
(C) $\Delta S=0$.
(D) $\Delta \mathrm{G}=0$
20. The major products Y and Z in the following reaction sequence are

(Z)

(A)

$(Z)=$

(B)

$(\mathrm{Z})=$

dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE |NEET | JEE
(D)

21. Which plot represents a spectrophotometric titration, where the titrant alone absorbs light in the visible region?
(A)

(C)

(D)

22. The sequence of three steps involved in the following conversion is

(A) (i) Friedel-Crafts alkylation; (ii) Reduction; (iii) Friedel-Crafts acylation
(B) (i) Friedel-Crafts acylation; (ii) Friedel-Crafts alkylation; (iii) Reduction
(C) (i) Friedel-Crafts acylation; (ii) Reduction; (iii) Friedel-Crafts alkylation
(D) (i) Friedel-Crafts alkylation; (ii) Friedel-Crafts acylation; (iii) Reduction
23. The electrolyte AB ; ionises in water as $\mathrm{AB}_{2} \rightleftharpoons \mathrm{~A}^{2+}+2 \mathrm{~B}^{-}$; The mean ionic activity coefficient $(\gamma) \pm$
(A) $\gamma_{\mathrm{A}^{2+}}^{\frac{1}{2}} \gamma_{\mathrm{B}}$
(B) $\gamma_{\mathrm{A}^{2+}}^{\frac{1}{2}} \gamma_{\mathrm{B}^{-}}^{\frac{2}{3}}$
(C) $\gamma_{\mathrm{A}^{2+}}^{\frac{2}{3}} \gamma_{\mathrm{B}^{-}}^{\frac{1}{3}}$
(D) $\left(\gamma_{\mathrm{A}^{2+}}+2 \gamma_{\mathrm{B}^{-}}\right)^{\frac{1}{2}}$

PSPIRNTOT ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
24. Consider the following four xenon compounds: $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeF}_{6}$ and XeO_{3}. The pair of xenon compounds expected to have non-zero dipole moment is
(A) XeF_{4} and XeF_{6}
(B) XeF_{2} and XeF_{4}
(C) XeF_{2} and XeO_{3}
(D) XeF_{6} and XeO_{3}
25. The product X in the following reaction sequence is

(A)

(D)

26. Among the dimethyl-cyclohexanes, which one can be obtained in enantiopure form?
(A)

(C)

(B)

~UKAT
27. The correct order of stability for the following carbocation is

(I)

(II)

(III)

(IV)
(A) I $<$ III $<$ IV $<$ II
(B) III $<$ II $<$ IV $<$ I
(C) II $<$ IV $<$ III $<$ I
(D) IV $<$ III $<$ I $<$ II
28. The major product formed in the following reaction is

[^1]dream high, beyond the sky Best Institute for ITJ JAM | CSIR NET | GATE [NEET | JEE

(A)

(B)

(C)

B

29. The major product formed in the following reaction is

(B)

(C)

(D)

30. The correct order of Δ_{0} (the octahedral crystal field splitting of d orbitals) values for the following anionic metatcomplexes is
(A) $\left[\operatorname{Ir}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{Rh}_{6}\right]^{3-}<\left[\mathrm{COI}_{6}\right]^{3}$
(B) $\left[\mathrm{CoI}_{6}\right]^{3-}<\left[\mathrm{RhI}_{6}\right]^{3-}<\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{3-}<\left[\operatorname{Ir}(\mathrm{CN})_{6}\right]$
(C) $\left[\mathrm{CoI}_{6}\right]^{3-}<\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{RhI}_{6}\right]^{3-}<\left[\operatorname{Ir}(\mathrm{CN})_{6}\right]^{3-}$
(D) $\left[\operatorname{Ir}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{CoI}_{6}\right]^{3-}<\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{3-}<\left[\mathrm{RhI}_{6}\right]^{3-}$

SECTION - II

1. Consider the following six solid binary oxides: $\mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{PbO}, \mathrm{Cs}_{2} \mathrm{O}, \mathrm{SiO}_{2}$ and $\mathrm{Sb}_{2} \mathrm{O}_{3}$. The pair (s) of ionic oxides is (are)
[^2]PSPIRRTOT ACADEMY $^{\text {ASA }}$
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE
(A) CaO and $\mathrm{Al}_{2} \mathrm{O}_{3}$
(B) CaO and PbO
(C) $\mathrm{Cs}_{2} \mathrm{O}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$
(D) SiO_{2} and $\mathrm{Sb}_{2} \mathrm{O}_{5}$
2. Which of the following metal(s) is (are) extracted from its (their) sulphide ore (s) by self-reduction air reduction method?
(A) Cu
(B) Al
(C) Au
(D) Pb
3. The correct statement(s) about carbene is (are)
(A)Carbene is a neutral species
(B) Carbene is an intermediate in the Curtius rearrangement
(C) Carbene can insert into both σ and π-bonds
(D) Carbene is generated from amines on reaction with nitrous acid
4. Choose the correct answer(s) with respect to the magnesium-EDTA titration carried out in the pH range 7-10.5, using solochrome black as indicator
(A) Magnesium-indicator complex is more stable than the magnesium-EDTA complex
(B) At the end point, the colour changes from red to blue
(C) After the end point, the colour of the solution is due to the indicator.
(D) pH range of $7-10.5$ is necessary for observing the specific colour change
5. The correct expression(s) for isothermal expansion of 1 mol of an ideal gas is (are)
(A) $\Delta A=R T \ln \frac{V_{\text {inital }}}{V_{\text {final }}}$
h A $-A(B) \Delta G=R \ln \frac{V_{\text {inital }}}{V_{\text {final }}}$
(C) $\Delta \mathrm{H}=\mathrm{RT} \ln \frac{\mathrm{V}_{\text {final }}}{\mathrm{V}_{\text {initial }}}$
(D) $\Delta S=R \ln \frac{V_{\text {final }}}{V_{\text {initial }}}$
6. Tetrapeptide(s) that gives (give) the following product on reaction with Sanger's reagent followed by hydrolysis is (are)

[^3]ASPIRTTOT ACADEMY $^{\text {ASTM }}$
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(A) Ala-Gly-Leu-Phe
(B) Asp-Phe-Leu-Pro
(C) Asp-Gly-Tyr-Phe
(D) Ala-Phe-Try-Pro
7. The compound (s) that shows (show) positive haloform test is (are)
(A)

(B)

(C)

8. Which of the following set (s) of quantum numbers is (are) NOT allowed?
(A) $n=3,1=2, m_{1}$
(C) $\mathrm{n}=3, \mathrm{l}=3, \mathrm{~m}_{1}$
$=-3$
(B) $n=4, l=0, m_{1}=-1$
(D) $n=5, \mathrm{l}=3, m_{1}=+2$
9. In a saturated calomel electrode, the saturation is with respect to
(A) KCl
(B) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
(C) HgCl_{2}
(D) AgCl
10. On reaction with NaNO_{2} and HCl , which of the following amino alcohol (s) will yield compound P ?

 OLKATA,
(A)

(B)

(C)

(D)

[^4]dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE

SECTION - III

1. Among the following hydrocarbon(s), how many of them would give rise to three groups of proton NMR peaks with 2:2:3 integration ratio?

2. The nuclear spin quantum number (I) of a nucleus is $\frac{3}{2}$. When placed in an external magnetic field, the number of possible spin energy states it can occupy is \qquad .
3. The number of possible isomers for $\left[\mathrm{Pt}(\mathrm{py})\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ is (py is pyridine)
4. The number of stereoisomers possible for the following compound is

5. Assuming ideal gas behaviour, the density of O_{2} gas at 300 K and 1.0 atm is gL^{-1} (rounded up to two decimal places).
$\left[\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right.$, molar mass of O_{2}
6. The time for 50% completion of a zero order reaction is 30 min . Time for 80% completion of this reaction is \qquad min.
7. The volume of 0.3 M ferrous ammonium sulphate solution required for the completion of redox titration with 20 mL of 0.1 M potassium dichromate solution is \qquad mL .
8. The value of C_{v} for 1 mol of N_{2} gas predicted from the principle of equipartition of energy, ignoring vibrational contribution, is ___ J K ${ }^{-1} \mathrm{~mol}^{-1}$ (rounded up to two decimal places).
$\left[\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
[^5]MSPIRTTOO ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
9. The number of hydrogen bond(s) present in a guanine-cytosine base pair is
\qquad _.
10. Consider the reaction $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$.

The value of $\Delta \mathrm{U}$ for the reaction at $300 \mathrm{~K}^{-1}-281.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of $\Delta \mathrm{H}$ at same temperature is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ (rounded up to the first decimal place) . $\left[\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$
11. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, the following information is given $\mathrm{T}=300 \mathrm{~K}$

$\overline{\mathrm{S}}_{\mathrm{O}_{2}}^{\circ}(\mathrm{g})=204 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-}$

$$
\overrightarrow{\mathrm{S}}_{\mathrm{H}_{2}}(\mathrm{~g})=130 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-}
$$

12. How many of the following inter-halogen species have 2 lone pairs of electrons on the central atom?
13. The solubility of Pbl_{2} in $0.10 \mathrm{M} \quad \mathrm{KI}(\mathrm{aq})$ is
 (rounded up to two decimal places).
[The solubility product, $\left.\mathrm{K}_{\mathrm{sp}}=7.1 \times 10^{-9}\right]$,
14. The number of compounds having S-configuration among the following is
\qquad _.

[^6]dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE

15. The magnitude of crystal field stabilization energy (CFSE) of octahedral $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex is $7680 \mathrm{~cm}^{-1}$. The wayelength at the maximum absorption $\left(\lambda_{\max }\right)$ of this complexis nm (rounded up to the nearest int eger).
16. The electron of a hydrogen atom is in its $\mathrm{n}^{\text {th }}$ Bohr orbit having de Broglie wavelength of 13.4 A . The value of n^{2} is (rounded up to the nearest integer). [Radius of $\mathrm{n}^{\text {th }} \mathrm{Bohr}$ orbit $\left.=0.53 . \mathrm{n}^{2} \mathrm{~A}, \pi=3.14\right]$
17. Elemental analysis of an organic compound containing C , Hand O gives percentage composition: $C: 39.9 \%$ and $H: 6.7 \%$. If the molecular weight of the compound is 180, the number of carbon atoms present in the molecule is \qquad .
18. The emf of a standard cadmium cellis 1.02 V at 300 K . The temperature coefficient of the cell is $-5.0 \times 10^{-5} \mathrm{VK}^{-1}$. The value of ΔH° for the cell is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ (rounded up to two decimal places).
$\left[1 \mathrm{~F}=96500 \mathrm{Cmol}^{-1}\right]$
19. For H_{2} molecule, the fundamental vibrational frequency $\left(\overline{\mathrm{v}}_{\mathrm{e}}\right)$ in wavenumbers can be taken as $400 \mathrm{~cm}^{-1}$, the zero-point energy of the molecule is \qquad kJ mol ${ }^{-1}$ (rounded up to two decimal places).
$\left[\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}, \mathrm{~N}_{\mathrm{A}}=6 \times 10^{23} \mathrm{~mol}^{-1}\right]$
asplrationiacaener
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE | NEET \| JEE
20. ${ }^{24} \mathrm{Na}$ decays to one-fourth of its initial amount in 29.8 hours. Its decay constant is
\qquad hour $^{-1}$ (rounded up to four decimal places).

[^0]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|2 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^1]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 窟 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 응 +918582979309
 Page|6 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^2]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 올 +918582979309 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^3]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|8 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^4]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 울 +918582979309 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^5]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page | 10 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^6]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 을 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 응 +918582979309 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

