

IIT JAM 2017

- 1. A straight line having a slop of $-\frac{\Delta U^{\circ}}{R}$ is obtained in a plot between
 - (a) ln (K_p) versus T (c) ln (K_p) versus 1/T

(b) ln (Kc) versus T (d) ln (Kc) Versus 1/T

- 2. The number of degrees of freedom of liquid water in equilibrium with ice is (a) 0 (b) 1 (c) 2 (d) 3
- 3.The number of normal modes of vibration in naphthalene is
(a) 55(b) 54(c) 48(d) 49
- 4. In the following sequence of reactions, the overall yield (%) of 0 is $L \xrightarrow{92\% \text{ yield}} M \xrightarrow{78\% \text{ yield}} N \xrightarrow{85\% \text{ yield}} O$ (a) 61 (b) 85 (c) 74 (d) 68
- 5. In the following Latimer diagram, the species that undergoes disproportionation reaction is

 $MnO_{4}^{-} \xrightarrow{+0.56} MnO_{4}^{2-} \xrightarrow{+0.27} MnO_{4}^{3-} \xrightarrow{+0.93} MnO_{2} \xrightarrow{+0.15} Mn_{2}O_{3} \xrightarrow{+0.25} Mn(OH)_{2} \xrightarrow{+1.56} Mn$ $(a) MnO_{4}^{2-} (b) MnO_{4}^{3-} (c) Mn_{2}O_{3} (d) Mn(OH)_{2}$

The compounds having C₃- axis of symmetry are 6. Br Me Me Br^{\\\'} ‴₿r Me Me Br Br Me Me (II) (III) **(I**) (IV)

(a) I, III and IV (b) I, II and III

(c) I and III

(d) III and IV

7. Catalytic hydrogenation of the following compound produces saturated hydrocarbon(s). The number of stereoisomer(s) formed is

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)# +91 70032 68624North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)# +91 85829 79309P a g e | 2Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

(ii) H₃O⁺, reflux (iii) polyphosphoric acid

Me

13. In a typical conductometric titration of a strong acid with a weak base, the curve resembles

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

17. For a particle in one-dimensional box of length L with potential energy V(x) = 0 for L > x > 0 and $V(x) = \infty$ for x ≥ 0, an acceptable wave function consistent with the boundary conditions is (A, B, C and D are constant)

(a) A cos
$$\left(\frac{n\pi x}{L}\right)$$
 (b) B $\left(x+x^2\right)$ (c) Cx³ $\left(x-L\right)$ (d) $\frac{D}{\sin\left(\frac{n\pi x}{L}\right)}$

18. The correct order of wavelength of absorption (λ_{max}) of the Cr-complexes is (en = ethylenediamine)

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)# +91 70032 68624North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)# +91 85829 79309P a g e4Website: www.aspirationacademy.inEmail: info@aspirationacademy.in

(a)
$$[CrF_{6}]^{3-} > [Cr(H_{2}O)_{6}]^{3+} > [Cr(en)_{3}]^{3+} > [Cr(CN)_{6}]^{3-}$$

(b) $[Cr(H_{2}O)_{6}]^{3+} > [CrF_{6}]^{3-} > [Cr(en)_{3}]^{3+} > [Cr(CN)_{6}]^{3-}$
(c) $[Cr(CN)_{6}]^{3-} > [Cr(en)_{3}]^{3+} > [Cr(H_{2}O)_{6}]^{3+} > [CrF_{6}]^{3-}$
(d) $[Cr(en)_{3}]^{3+} > [Cr(CN)_{6}]^{3-} > [Cr(H_{2}O)_{6}]^{3+} > [CrF_{6}]^{3-}$

19. In the following reaction, the major products E and F, respectively, are OH

- (d) ozonolysis followed by haloform reaction
- 21. The correct set of reagents for the following conversion is

South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro) North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro) Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

	OMe 	OMe 					
	(a) (i) NaNH ₂ /liq,NH ₃ ; (ii) NaNO ₂ /dil.HCl; (iii) CuCN, heat (b) (i) HNO ₃ /H ₂ SO ₄ ; (ii) Zn/HCl; (iii) NaNO ₂ /dil.HCl; (iv) CuCN, heat (c) (i) Mg/ether, H ₃ O ⁺ ; (ii) (EtO) ₂ CO; (iii) NH ₄ OH; (iv) PCl ₅ \ (d) (i) Mg/ether,H ₃ O ⁺ ; (ii) HNO ₃ /H ₂ SO ₄ ; (iii) NaNO ₂ /dil. HCl; (iv) CuCN, heat						
22.	The homogeneous (a) PdCl ₂ (c) $\left[RhCl(PPh_3)_3 \right]$	catalyst used in wate	er-gas shift reaction i (b) Cr_2O_3 (d) RuCl ₂ (bipyridy	s yl) ₂]			
23.	Nitrosyl ligand bin respectively, as (a) NO ⁺ and NO ⁺	nds to d-metal atom (b) NO+ and NO-	s in linear and bent (c) NO ⁻ and NO ⁻	fashion and behaves (d) NO-and NO+			
24.	$\frac{dy}{dx} = -\frac{y}{x}$ is different (a) circle	ntial equation for a/a (b) ellipse	n (c) bell-shaped curv	ze (d) Hyperbola			
25.	The correct order (a) Cr ²⁺ > Mn ²⁺ > C (c) Ni ²⁺ > Co ²⁺ > Cr	of enthalpy of hydrat o ²⁺ > Ni ²⁺ ²⁺ > Mn ²⁺	ion for the transition (b) Ni ²⁺ > Co ²⁺ > Mr (d) Cr ²⁺ > Mn ²⁺ > Ni	metal ions is 1 ²⁺ > Cr ²⁺ 2 ⁺ > Co ²⁺			
26.	Ionisation energy ((in eV) for third m (a) 13.056	of hydrogen atom in g ember of Balmer seri (b) 2.856	round state is 13.6 eV es is (c) 0.967	7. The energy released (d) 0.306			
27.	The coordination r (a) 4 and 4	number of Al in crysta (b) 6 and 6	illine AlCl3 and liquid (c) 6 and 4	AlCl ₃ , respectively, is (d) 3 and 6			
28.	Value of the given $ \begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{bmatrix} $	determinant is					
	(a) –12	(b) 0	(c) 6	(d) 12			

29.	For a first order reappressure (p_0) and r	+ C(g), the rate cons	stant in terms of initial				
	(a) $\frac{1}{t} \ln \frac{p_0}{p_t - p_0}$	(b) $\frac{1}{t} \ln \frac{2p_0}{3p_0 - p_t}$	(c) $\frac{1}{t} \ln \frac{3p_0}{p_t - p_0}$	(d) $\frac{1}{t} \ln \frac{3p_0}{3p_t - p_0}$			
30.	The metal ion (M ²⁺) in the following reaction is $M^{2+} + S^{2-} \rightarrow Black prcipitate \xrightarrow{hot conc. HNO_3} White precipitate$						
	(a) Mn ²⁺	(b) Fe ²⁺	(c) Cd ²⁺	(d) Cu ²⁺			
		SECTIO	N - R				
Q.31 – Q.40 carry TWO marks each.							
1.	IR active molecule((a) CO ₂	s) is/are (b) CS2	(c) 06S	(d) N2			
2.	The INCORRECT statement(s) among the following is/are (a) $[4\pi + 2\pi]$ cycloaddition reactions are carried out presence of light						
	(b) $\left[2\pi + 2\pi\right]$ cycle	addition reaction	between keto grou	up and an alkene is			
	photochemical allowed (c) $[4\pi + 2\pi]$ cycloaddition reactions are thermally allowed (d) Transoid dienes undergo Diels-Alder reactions						
3.	Intensive variable(s) is/are	*				
	(a) temperature	(b) volume	(c) pressure	(d) density			
4.	Wave nature of ele (a) diffraction (c) photoelectric ef	ctromagnetic radiati fect	ion is observed in (b) interference (d) Compton scatte	ering			
5.	Among the followin (a) SF ₄	ng, the species havin (b) XeF4	g see-saw shape is a (c) ClF ⁺ ₄	re (d) CIF4			
6.	Among the following, the correct statement(s) is/are (a) Guanine is a purine nucleobase (b) Glycine and praline are achiral amino acids (c) DNA contains glycosidic bonds and pentose sugars (d) Sucrose is a non-reducing sugar						
7.	The following conv	ersion(s) is are exar	nple(s) of				

- 2. At 298 K atm, The molar enthalpies of combustion of cyclopropane and propene are -2091 kJ mol⁻¹ and -2058 kJ mol⁻¹, respectively. The enthalpy change (in kJ mol⁻¹) for the conversion of one mole of propene to one mole of cyclopropane is
- 3. The number of unpaired electron(s) in K₂NiF₆ is _____
- 4. The number of S S bond(s) in tetrathionate ion is _____

- 5. At an operating frequency of 350 MHz, the shift (in Hz) of resonance from TMS (tetramethylsilane) of a proton with chemical shift of 2 ppm is _____
- 6. The number of reducing sugars among the following is _____

- 7. For a reaction $2A + B \rightarrow C + D$, if rate of consumption of A is 0.1 mol L⁻¹ s⁻¹, the rate of production of C (in mol L⁻¹ s⁻¹) is ______.
- 8. The maximum $2A + B \rightarrow C + D$, if rate of consumption of A is 0.1 mol L⁻¹ s⁻¹, the rate of production of C (in mol L⁻¹ s⁻¹) is _____
- 9. The number of isomeric structure of di-substituted borazine $(B_3N_3H_4X_2)$ is
- 10. For a cell reaction, Pb(s) + Hg₂Cl₂(s) \rightarrow PbCl₂(s) + 2Hg(l), $\left(\frac{\partial E^{\circ}}{\partial T}\right)_{P}$ is 1.45 × 10⁻⁴

VK⁻¹. The entropy change (in J mol⁻¹ K⁻¹) for the reaction is _____ [Given 1 F = 96500 C mol^{-1}]

- 11. The total number of pair of enantiomers possible with molecular formula $C_5H_{12}O$ is ______
- 12. The adsorption of a gas follows the Langmuir isotherm with $K = 1.25 \text{ kPa}^{-1}$ at 25°C. The pressure (in Pa) at which surface coverage is 0.2 is _____.

- 13. Silver crystallizes in a face-centred cubic lattice. The lattice parameter of silver (in picometer) is ______. [given: Avogadro's number = 6.023 × 10+23 ^{mol}-1[,] molar mass of silver = 107.87 g mol⁻¹ and density of crystal = 10.5 g cm⁻³]
- 14. The separation of 123 planes (in nm) in an orthorhombic cell with a = 0.25 nm, b = 0.5 nm and c = 0.75 nm is _____. (Final answer should be rounded off to two decimal places)
- 15. A radioactive element undergoes 80% radioactive decay in 300 min. The half-life for this species in minutes is _____.
- 16. The standard reduction potentials of Ce^{4+}/Ce^{3+} and Fe^{3+}/Fe^{2+} are 1.44 and 0.77 V, respectively. The log¹⁰K (K is the equilibrium constant) value for the following reaction is ______. (Final answer should be rounded off to decimal places) $Ce^{4+} + Fe^{2+} Ce^{3+} + Fe^{3+}$ [Given: RT/F = 0.257 V]
- 17. In 200 g of water, 0.01 mole of NaCl and 0.02 mole of sucrose are dissolved. Assuming solution to be ideal, the depression in freezing point of water (in*C) will be ______. (Final answer should be rounded off to two decimal places) [Given: K_f(H₂O) = 1.86 K kg mol⁻¹]
- 18. Consider an isothermal reversible compression of one mole of an ideal gas in which the pressure of the system is increased from 5 atm at 300K. The entropy change of the surrounding (in JK⁻¹) is _____. (Final answer should be rounded off to two decimal places) [Given: R = 8.314 J mol⁻¹ K⁻¹]
- 19. The amount of bromine (atomic wt. = 80) required (in gram) for the estimation of 42.3 g of phenol (molecular wt. = 94 g mol⁻¹) is _____
- 20. A vessel contains a mixture of H₂ and N₂ gas. The density of this gas mixture is 0.2 g L⁻¹ at 300 K and 1 atm. Assuming that both the gases behave ideally, the mole fraction of N(g) in the vessel is _____.
 (Final answer should be rounded off to two decimal places)
 [Given: R = 0.082 L atm mol⁻¹ K⁻¹, atomic wt. of hydrogen = 1.0 and atomic wt. of nitrogen = 14.0]