1SP/T【1 O ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE

IIT JAM 2017

1. A straight line having a slop of $-\frac{\Delta U^{0}}{R}$ is obtained in a plot between
(a) $\ln \left(K_{p}\right)$ versus T
(b) $\ln \left(K_{c}\right)$ versus T
(c) $\ln \left(K_{p}\right)$ versus $1 / T$
(d) $\ln \left(K_{c}\right)$ Versus $1 / T$
2. The number of degrees of freedom of liquid water in equilibrium with ice is
(a) 0
(b) 1
(c) 2
(d) 3
3. The number of normal modes of vibration in naphthalene is
(a) 55
(b) 54
(c) 48
(d) 49
4. In the following sequence of reactions, the overall yield ($\%$) of 0 is

(a) 61
(b) 85

-

(c) 74
(d) 68
5. In the following Latimer diagram, the species that undergoes disproportionation reaction is
$\mathrm{MnO}_{4}^{-} \xrightarrow{+0.56} \mathrm{MnO}_{4}^{2-} \xrightarrow{+0.27} \mathrm{MnO}_{4}^{3-} \xrightarrow{+0.93} \mathrm{MnO}_{2} \xrightarrow{+0.15} \mathrm{Mn}_{2} \mathrm{O}_{3} \xrightarrow{+0.25} \mathrm{Mn}(\mathrm{OH})_{2} \xrightarrow{+1.56} \mathrm{Mn}$
(a) MnO^{2}
(b) MnO_{4}^{3-}
(c) $\mathrm{Mn}_{2} \mathrm{O}$
(d) $\mathrm{Mn}(\mathrm{OH})_{2}$
6. The compounds having C_{3}-axis of symmetry aree

(I)

(II)

(III)

(IV)
(a) I, III and IV
(b) I, II and III
(c) I and III
(d) III and IV
7. Catalytic hydrogenation of the following compound produces saturated hydrocarbon(s). The number of stereoisomer(s) formed is

[^0]1SP/R11 O ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE

(a) 1
(b) 2
(c) 3
(d) 4
8. The correct order of rate of solvolysis for the following compounds is

(I)
(II)
(III)
(b) 1,4 \& III - (c) \& \& IH
(d) III \& IV
9. The correct order of the boiling points of the compounds is
(a) $\mathrm{CH}_{4}>\mathrm{SiH}_{4}>\mathrm{SnH}_{4}$
(b) $\mathrm{SiH}_{4}>\mathrm{CH}_{4}>\mathrm{GeH}_{4}>\mathrm{SnH}_{4}$
(c) $\mathrm{SnH}_{4}>\mathrm{GeH}_{4}>\mathrm{CH}_{4}>\mathrm{SiH}_{4}$
(d) $\mathrm{SnH}_{4}>\mathrm{GeH}_{4}>\mathrm{SiH}_{4}>\mathrm{CH}_{4}$
10. A yellow precipitate is formed upon addition of aqueous AgNO_{3} to a solution of
(a) phosphatē
(b) pyrophosphate
(c) metaphosphate
(d) orthophosphate

Q. 11 - Q. 30 carry TWO marks each.

11. Among the following compounds, the pair of enantiomers is

(I)

(II)

(III)

(IV)
(d) III and IV
(a) I and IV
(b) I and III
(c) II and III
(d)
12. In the following reaction, the major product T is

(i) NaOMe
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$, reflux
(iii) polyphosphoric acid

1SPRY1O ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(a)

(b)

(c)

(d)

13. In a typical conductometric titration of a strong acid with a weak base, the curve
resembles
(a)

(c)

14. The major product S of the following reaction is

(a)

(b)

dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE |NEET | JEE
(c)

(d)

15. The number of proton NMR signals for the compounds P and Q, respectively, is

(P)

(Q)
(a) 3 and 4
(b) 3 and 5
5011
(c) 4 and 3
(d) 5 and 4
16. The product R in the following reaction is
(a)

(c)

(b)

17. For a particle in one-dimensional box of length L with potential energy $V(x)=0$ for $L>x>0$ and $V(x)=\infty$ for $x \geq 0$, an acceptable wave function consistent with the boundary conditions is ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are constant)
(a) $A \cos \left(\frac{n \pi x}{L}\right)$
(b) $B\left(x+x^{2}\right)$
(c) $\mathrm{Cx}^{3}(\mathrm{x}-\mathrm{L})$
(d) $\frac{D}{\sin \left(\frac{n \pi x}{L}\right)}$
18. The correct order of wavelength of absorption $\left(\lambda_{\max }\right)$ of the Cr -complexes is (en $=$ ethylenediamine)

ASPIRRTOO ACADEMY $^{\text {ASA }}$
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(a) $\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(c) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}$
(d) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}$
19. In the following reaction, the major products E and F, respectively, are

20. The following conversion is carried out using

(a) Hydroboration-oxidation followed by Jones oxidation
(b) Wacker oxidation followed by haloform reaction
(c) oxy-mercuration-demercuration followed by Jones oxidation
(d) ozonolysis followed by haloform reaction
21. The correct set of reagents for the following conversion is

1SPMT1【O ACADEMY
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE | NEET | JEE

(a) (i) $\mathrm{NaNH}_{2} /$ liq, NH_{3}; (ii) $\mathrm{NaNO}_{2} /$ dil. HCl ; (iii) CuCN , heat
(b) (i) $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$; (ii) $\mathrm{Zn} / \mathrm{HCl}$; (iii) $\mathrm{NaNO}_{2} /$ dil. HCl ; (iv) CuCN , heat
(c) (i) $\mathrm{Mg} /$ ether, $\mathrm{H}_{3} \mathrm{O}^{+}$; (ii) (EtO$)_{2} \mathrm{CO}$; (iii) $\mathrm{NH}_{4} \mathrm{OH}$; (iv) $\mathrm{PCl}_{5} \backslash$
(d) (i) $\mathrm{Mg} /$ ether, $\mathrm{H}_{3} \mathrm{O}^{+}$; (ii) $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$; (iii) $\mathrm{NaNO}_{2} /$ dil. HCl ; (iv) CuCN , heat
22. The homogeneous catalyst used in water-gas shift reaction is
(a) PdCl_{2}
(b) $\mathrm{Cr}_{2} \mathrm{O}_{3}$
(c) $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$
(d) $\left[\mathrm{RuCl}_{2}(\text { bipyridyl })_{2}\right]$
23. Nitrosyl ligand binds to d-metal atoms in linearand bent fashion and behaves respectively, as
(a) NO^{+}and NO^{+}
(b) NO^{+}and NO^{-}
(c) NO^{-}and NO^{-}
(d) NO^{-}and NO^{+}
24. $\frac{d y}{d x}=-\frac{y}{x}$ is differential equation for a/an
(a) circle
(b) ellipse
(c) bell-shaped curve (d) Hyperbola
25. The correct order of enthalpy of hydration for the transition metal ions is
(a) $\mathrm{Cr}^{2+}>\mathrm{Mn}^{2+}>\mathrm{Co}^{2}+>\mathrm{Ni}^{2+}$
(b) $\mathrm{Ni}^{2+}>\mathrm{Co}^{2+}>\mathrm{Mn}^{2+}>\mathrm{Cr}^{2+}$
(c) $\mathrm{Ni}^{2+}>\mathrm{CO}^{2+}>\mathrm{Cr}^{2+}>\mathrm{Mn}^{2+}$
(d) $\mathrm{Cr}^{2+}>\mathrm{Mn}^{2+}>\mathrm{Ni}^{2+}>\mathrm{Co}^{2+}$
26. Ionisation energy of hydrogen atom in ground state is 13.6 eV . The energy released (in eV) for third member of Balmer series is
(a) 13.056
(b) 2.856
(c) 0.967
(d) 0.306
27. The coordination number of Al in crystalline AlCl_{3} and liquid AlCl_{3}, respectively, is
(a) 4 and 4
(b) 6 and 6
(c) 6 and 4
(d) 3 and 6
28. Value of the given determinant is
$\left[\begin{array}{ccc}1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2\end{array}\right]$
(a) -12
(b) 0
(c) 6
(d) 12

[^1]asplrationiananemr
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
29. For a first order reaction $A(g) \rightarrow 2 B(g)+C(g)$, the rate constant in terms of initial pressure (p_{0}) and pressure at time $t\left(p_{t}\right)$, is given by
(a) $\frac{1}{t} \ln \frac{p_{0}}{p_{t}-p_{0}}$
(b) $\frac{1}{\mathrm{t}} \ln \frac{2 \mathrm{p}_{0}}{3 \mathrm{p}_{0}-\mathrm{p}_{\mathrm{t}}}$
(c) $\frac{1}{\mathrm{t}} \ln \frac{3 \mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}-\mathrm{p}_{0}}$
(d) $\frac{1}{\mathrm{t}} \ln \frac{3 \mathrm{p}_{0}}{3 \mathrm{p}_{\mathrm{t}}-\mathrm{p}_{0}}$
30. The metal ion $\left(\mathrm{M}^{2+}\right)$ in the following reaction is
$\mathrm{M}^{2+}+\mathrm{S}^{2-} \rightarrow$ Black prcipitate $\xrightarrow{\text { hot conc. } \mathrm{HNO}_{3}}$ White precipitate
(a) Mn^{2+}
(b) Fe^{2+}
(c) Cd^{2+}
(d) Cu^{2+}

SECTION - B

Q. 31 - Q. 40 carry TWO marks each.

1. IR active molecule(s) is/are
(a) CO_{2}
(b) CS_{2}

ON
B

1SPIT11 O A ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE

(a) oxy-Cope rearrangement
(b) sigma tropic rearrangement
(c) Claisen rearrangement
(d) pericyclic reaction
8. The "heme" containing protein(s) is/are
(a) cytochrome C
(b) hemocyanin
(c) hemerythrin
(d) myoglobin
9. Jahn-Teller distortion is/are observes in octahedral complex with d-electron configuration of
(a) d5-high spin
(b) d5-low spin
(c) d6-high spin
(d) d6-low spin
10. The indicator(s) appropriate for the determination of end point in the titration of a weak acid with a strong base is/are
(a) phenolphthalein
(c) bromophenol blưe
(b) thymol blue
(d) methyl orange

Q. 41 - Q. 50 carry One mark each.

1. Among the following, the number of aromatic compound(s) is \qquad

2. At 298 K atm , The molar enthalpies of combustion of cyclopropane and propene are $-2091 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-2058 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The enthalpy change (in kJ mol^{-1}) for the conversion of one mole of propene to one mole of cyclopropane is
\qquad .
3. The number of unpaired electron(s) in $\mathrm{K}_{2} \mathrm{NiF}_{6}$ is \qquad
4. The number of $S-S$ bond(s) in tetrathionate ion is \qquad
[^2]PSPIRRTIO A ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
5. At an operating frequency of 350 MHz , the shift (in Hz) of resonance from TMS (tetramethylsilane) of a proton with chemical shift of 2 ppm is \qquad
6. The number of reducing sugars among the following is \qquad

7. For a reaction $2 A+B \rightarrow C+D$, if rate of consumption of A is $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, the rate of production of C (in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}$ \qquad -.

8. The maximum $2 A+B \rightarrow C+D$, if rate of consumption of A is $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, the rate of production of $\mathrm{C}\left(\mathrm{in} \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$ is
9. The number of isomeric structure of di-substituted borazine $\left(\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{4} \mathrm{X}_{2}\right)$ is
\qquad
10. For a cell reaction, $\mathrm{Pb}(\mathrm{s})+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+2 \mathrm{Hg}(1),\left(\frac{\partial \mathrm{E}^{0}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}$ is 1.45×10^{-4} VK^{-1}. The entropy change (in $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$) for the reaction is \qquad [Given $1 \mathrm{~F}=$ $96500 \mathrm{C} \mathrm{mol}^{-1}$]
11. The total number of pair of enantiomers possible with molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ is \qquad
12. The adsorption of a gas follows the Langmuir isotherm with $\mathrm{K}=1.25 \mathrm{kPa}^{-1}$ at $25^{\circ} \mathrm{C}$. The pressure (in Pa) at which surface coverage is 0.2 is \qquad .

[^3]ASPIRRTIO ACADEMY $_{\text {ACA }}$
dream high, beyond the sky
Best Institute for IIT JAM | CSIR NET | GATE | NEET | JEE
13. Silver crystallizes in a face-centred cubic lattice. The lattice parameter of silver (in picometer) is \qquad . [given: Avogadro's number $=6.023 \times 10+23$ mol -1 , molar mass of silver $=107.87 \mathrm{~g} \mathrm{~mol}^{-1}$ and density of crystal $=10.5 \mathrm{~g} \mathrm{~cm}^{-3}$]
14. The separation of 123 planes (in nm) in an orthorhombic cell with $\mathrm{a}=0.25 \mathrm{~nm}$, $\mathrm{b}=0.5 \mathrm{~nm}$ and $\mathrm{c}=0.75 \mathrm{~nm}$ is \qquad . (Final answer should be rounded off to two decimal places)
15. A radioactive element undergoes 80% radioactive decay in 300 min . The half-life for this species in minutes is
16. The standard reduction potentials of $\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}$ and $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ are 1.44 and 0.77 V , respectively. The $\log ^{10} \mathrm{~K}$ (K is the equilibrium constant) value for the following reaction is \qquad . (Final answer should be rounded off to decimal places) $\mathrm{Ce}^{4+}+\mathrm{Fe}^{2+} \mathrm{Ce}^{3+}+\mathrm{Fe}^{3+}$
[Given: RT/F $=0.257 \mathrm{~N}$]
17. In 200 g of water, 0.01 mole of NaCl and 0.02 mole of sucrose are dissolved. Assuming solution to be ideal, the depression in freezing point of water (in*C) will be \qquad . (Final answer should be rounded off to two decimal places) [Given: $\mathrm{Kf}^{(}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
18. Consider an isothermal reversible compression of one mole of an ideal gas in which the pressure of the system is increased from 5 atmat 300K. The entropy change of the surrounding (in JK^{-1}) is
(Final answer should be rounded off to two decimal places)
[Given: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$]

19. The amount of bromine (atomic wt. $=80$) required (in gram) for the estimation of 42.3 g of phenol (molecular $\mathrm{wt} .=94 \mathrm{~g} \mathrm{~mol}^{-1}$) is \qquad
20. A vessel contains a mixture of H_{2} and N_{2} gas. The density of this gas mixture is 0.2 $\mathrm{g} \mathrm{L}^{-1}$ at 300 K and 1 atm . Assuming that both the gases behave ideally, the mole fraction of $\mathrm{N}(\mathrm{g})$ in the vessel is \qquad .
(Final answer should be rounded off to two decimal places)
[Given: $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, atomic wt. of hydrogen $=1.0$ and atomic wt. of nitrogen $=14.0$]

[^4]
[^0]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 푤 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 응 +918582979309 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^1]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|6 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^2]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro) +91 8582979309
 Page|8 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^3]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 7003268624
 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |
 +91 8582979309

[^4]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|10 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

