1SPRRMTO A AcadEmy
dream high, beyond the sky Best Institute for IIT JAM | CSIR NET | GATE [NEET | JEE

IIT JAM 2016

1. The correct order of pKa for the following compounds is

|

\|

IV
(a) II $>$ I $>$ III $>$ IV
(b) II $>$ I $>$ IV
III
(c) III $>$ IV $>$ I $>$ II
(d) IV $>$ II $>$ I $>$ III
2. The major product formed in the following reaction is

3. The mechanism of the following transformation involves

(excess)

(a) Aldol reaction and Cannizzaro reaction
(b) Aldol reaction and Claisen-Schmidt reaction
(c) Knoevenagel condensation and Cannizzaro reaction
(d) Stobbe condensation and Cannizzaro reaction
4. The most basic amino acid among the following is
(a) tyrosine
(b) methionine
(c) arginine
(d) glutamine
5. The crystal field stabilization energy (CFSE) in $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(a) $0 \Delta_{0}$
(b) $2.0 \Delta_{0}-2 \mathrm{P}$
(c) $0.4 \Delta_{0}-2 \mathrm{P}$
(d) $2.0 \Delta_{0}$
6. Indicator used in redox titration is
(a) Eriochrome black T
(b) Methyl orange
(c) Phenolphalein
(d) Methylene blue
7. Among the following, the compound that has the lowest degree of ionic character is
(a) NaCl
(b) MgCl_{2}
(c) AlCl_{3}
(d) CaCl_{2}
8. The correct order of entropy for various states of CO_{2} is
(A) $\mathrm{CO}_{2}(\mathrm{~s})>\mathrm{CO}_{2}(\mathrm{l})>\mathrm{CO}_{2}$ (g)
01 N
(B) CO_{2} (l) $>\mathrm{CO}_{2}$ (s) $>\mathrm{CO}_{2}$ (g)
(C) $\mathrm{CO}_{2}(\mathrm{~g})>\mathrm{CO}_{2}($ l $)>\mathrm{CO}_{2}(\mathrm{~s})$
(D) $\mathrm{CO}_{2}(\mathrm{~g})>\mathrm{CO}_{2}(\mathrm{~s})>\mathrm{CO}_{2}(\mathrm{l})$
9. The coordination numbers of Cs^{+}and Cl^{-}ions in the CsCl structure, respectively, are
(a) 4,4
(b) 4, 8
(c) 6,6
(d) 8,8
10. Determinant of a square matrix is always
(a) a square matrix
(b) a column matrix
(c) a row matrix
(d) a number

Q. 11 - Q. 30 carry TW0 marks each.

11. The correct order of ${ }^{1} \mathrm{H}$ NMR chemical shiff (δ) values of the labelled methyl groups in the following compound is

(a) $\mathrm{Me}^{1}<\mathrm{Me}^{2}<\mathrm{Me}^{3}<\mathrm{Me}^{4}$
(b) $\mathrm{Me}^{3}<\mathrm{Me}^{4}<\mathrm{Me}^{1}<\mathrm{Me}^{2}$
(c) $\mathrm{Me}^{3}<\mathrm{Me}^{1}<\mathrm{Me}^{4}<\mathrm{Me}^{2}$
(d) $\mathrm{Me}^{2}<\mathrm{Me}^{4}<\mathrm{Me}^{3}<\mathrm{Me}^{1}$
12. Among the following, the most stable conformation of meso-2, 3-dibromobutane is
[^0]ASPIRATIOANAConemr
dream high, beyond the sky Best Institute for IITJAM | CSIR NET | GATE [NEET | JEE
(a)

(b)

(c)

(d)

13. The major products X and Y in the following reaction sequence are

(a)

(b)

(d)

14. The major product formed in the reaction of butane-nitrile with phenylmagnesium bromide followed by acidification is .
(a)

(c)

[^1]른 +9170032 68624

ASPIRATIONTACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
15. An organic compound on reaction with 2, 4-dinitrophenylhydrazine (2, 4-DNP) gives a yellow precipitate. It also give silver mirror on reaction with ammonical AgNO_{3}. It gives an alcohol and sodium salt of a carboxylic acid on reaction with concentrated NaOH . It yields benzene-1, 2-dicarboxylic acid on heating with alkaline KMnO_{4}. The structure of the compound among the following is

(b)

(c)

(d)

(a)

200
6. The major products X and Y in the following reaction sequence are
(a)

(ii) Mel

$\mathbf{Y}=$
(b)
(c)

$\mathbf{Y}=$

$\mathbf{Y}=$

(d)
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
17. The True statement about $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is
(a) All $\mathrm{Cu}-\mathrm{O}$ bond lengths are equal
(b) One $\mathrm{Cu}-\mathrm{O}$ bound length is shorter than the remaining five
(c) Three $\mathrm{Cu}-\mathrm{O}$ bond lengths are shorter than the remaining three
(d) Four Cu-O bond lengths are shorter than the remaining two
18. The complexes $\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{NiCl}_{4}\right]^{2-}$, respectively, are
(a) paramagnetic, paramagnetic
(b) diamagnetic, diamagnetic
(c) paramagnetic, diamagnetic
(d) diamagnetic, paramagnetic
19. The value of ' x ' in $\left[\mathrm{Cu}(\mathrm{CO})_{x}\right]^{ \pm}$such that it obeys the 18 electron rule is
(a) 6
(b) 5
(c) 4
(d) 3
20. The correct order of $y_{\mathrm{no}}\left(\mathrm{cm}^{-1}\right)$ in the following compounds is
(a) $\mathrm{NO}^{+}>\mathrm{NO}>[\mathrm{NiCp}(\mathrm{NO})]>\left[\mathrm{Cr}(\mathrm{Cp})_{2}(\mathrm{NO})_{4}\right]$
(b) $\left[\mathrm{Cr}(\mathrm{Cp})_{2}(\mathrm{NO})_{4}\right]>\left[\mathrm{NiCp}(\mathrm{NO})^{7}\right]>\mathrm{NO}^{+}>\mathrm{NO}$
(c) $\mathrm{NO}^{+}>\left[\mathrm{Cr}(\mathrm{CP})_{2}(\mathrm{NO})_{4}\right]>\mathrm{NO}>[\mathrm{NiCp}(\mathrm{NO})]$
(d) $[\mathrm{NiCp}(\mathrm{NO})]>\mathrm{NO}>\left[\mathrm{Cr}(\mathrm{Cp})_{2}(\mathrm{NO})_{4}\right]>\mathrm{NO}^{+}$
21. The red colour of ruby is due to
(a) d-d transition of Cr^{3} +ion in $\mathrm{Cr}_{2} \mathrm{O}_{3}$ lattice
(b) d-d transition of $\mathrm{Cr}^{3}+$ ion in $\mathrm{Al}_{2} \mathrm{O}_{3}$ lattice
(c) ligand to metal charge transfer transition
(d) metal to metal charge transfer transition
22. The final products in the reaction of BF_{3} with water are
(a) $\mathrm{B}(\mathrm{OH})_{3}$ and OF_{2}
(b) $\mathrm{H}_{3} \mathrm{BO}_{3}$ and HBF_{4}
(c) $\mathrm{B}_{2} \mathrm{O}_{3}$ and HBF_{4}
(d) $\mathrm{B}_{2} \mathrm{H}_{6}$ and HF
23. The correct order of bond angles in $\mathrm{BF}_{3} \mathrm{NH}_{3} . \mathrm{NF}_{3}$ and PH_{3} is
(a) $\mathrm{BF}_{3}>\mathrm{NH}_{3}>\mathrm{NF}_{3}>\mathrm{PH}_{3}$
(b) $\mathrm{PH}_{3}>\mathrm{BF}_{3}>\mathrm{NF}_{3}>\mathrm{NH}_{3}$
(c) $\mathrm{BF}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{NF}_{3}$
(d) $\mathrm{NH}_{3}>\mathrm{NF}_{3}>\mathrm{BF}_{3}>\mathrm{PH}_{3}$
24. The maximum of a function $\mathrm{Ae}^{-\mathrm{ax}}(\mathrm{A}>0 ; \mathrm{a}>0)$ is at $\mathrm{x}=$

1SPRYAO ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(a) 0
(b) $+\infty$
(c) $-\infty$
(d) $\frac{1}{\sqrt{\mathrm{a}}}$
25. At 298K, 0.1 mol of ammonium acetate and 0.14 mol of acetic acid are dissolved in 1 L of water. The pH of the resulting solution is [Given : pK_{a} of acetic acid is 4.75]
(a) 4.9
(b) 4.6
(c) 4.3
(d) 2.3
26. An electrochemical cell consists of two half-cell reactions

$$
\mathrm{AgCl}(\mathrm{~s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

$$
\mathrm{Cu}(\mathrm{~s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}
$$

The mass of copper (in grams) dissolved on passing 0.5 A current for 1 hour is [Given : atomic mass of cuis 63.6; $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$]
(a) 0.88
(b) 1.18
(c) 0.29
(d) 0.59
27. For a zero order reaction, the half-life depends on the initial concentration $\left[\mathrm{C}_{0}\right]$ of the reactant as
(a) $\left[\mathrm{C}_{0}\right.$
(b) $\left[\mathrm{C}_{0}\right]^{0}$

- (c) $\left[\mathrm{C}_{0}\right]^{-1}$
(d) $\left[C_{0}\right]^{1 / 2}$

28. The effective nuclear change of helium atom is 1.7. The first ionization energy of helium in eV is
(a) 13.6
(b) 23.1
(c) 39.3
(d) 27.2
29. The relationship between the van der Waal's 'b' coefficient of N_{2} and O_{2} is
(a) $\mathrm{b}\left(\mathrm{N}_{2}\right)=\mathrm{b}\left(\mathrm{O}_{2}\right)=0$

(c) $b\left(\mathrm{~N}_{2}\right)>b\left(\mathrm{O}_{2}\right)$
KATA
(b) $\mathrm{b}\left(\mathrm{N}_{2}\right)=\mathrm{b}\left(\mathrm{O}_{2}\right) \neq 0$
(d) $\mathrm{b}\left(\mathrm{N}_{2}\right)<\mathrm{b}\left(\mathrm{O}_{2}\right)$
30. From the kinetic theory of gases, the ratio of most probable speed $\left(\mathrm{C}_{\mathrm{mp}}\right)$ to root mean square speed ($\mathrm{C}_{\mathrm{rms}}$) is
(a) $\sqrt{3}$
(b) $\sqrt{2} / \sqrt{3}$
(c) $\sqrt{3} / \sqrt{2}$
(d) $3 / \sqrt{2}$

SECTION - B

Q. 31 - Q. 40 carry TWO marks each.

31. The correct statement(s) about the following species is (are)
[^2]1SPRRATO A Academy
dream high, beyond the sky Best Institute for IIT JAM | CSIR NET | GATE [NEET | JEE

I

II

III
(a) I and II are resonance structure
(b) II and III are resonance structures
(c) II and III are diastereomers
(d) III is a tautomer of I
32. Consider the following reaction:

$$
\mathrm{Ph}-\mathrm{NH}-\mathrm{NH}_{2}
$$

(D)-glucose $\xrightarrow[\text { (3 equiv) }{ }^{2}]{\text { (2) }} \mathbf{x}$
cat. H^{+}
Among the following, the compound(s) whose osazone derivatives(s) will have the same
(a)

(b)

33. The appropriate reagents required for carrying out the following transformation are

(a) (i) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH} \overline{\mathrm{C}} \overline{\mathrm{O}}_{2} \mathrm{Et}$; (iii) aq. NaOH , heat, then acidify
(b) (i) $\mathrm{VrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, aq. Acetone (ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NaOAc}$
(c) (i) MnO_{2}; (ii) $\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$, piperidine, pyridine
(d) (i) PCC ; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{Zn}$ (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$heat
34. The appropriate reagents required for carrying out the following transformation are

[^3]dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE
(a) (i) Succinic anhydride, AlCl_{3}; (ii) $\mathrm{Zn} / \mathrm{Hg}, \mathrm{HCl}$; (iii) polyphosphoric acid
(b) (i) Maleic anhydride, AlCl_{3}; (ii) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}, \mathrm{KOH}$; (iii) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(c) (i) succinic anhydride, FeCl_{3}; (ii) LiAlH_{4}; (iii) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) (i) phthalic anhydride, $\mathrm{F}_{3} \mathrm{~B}$. OEt_{2}; (ii) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SH}, \mathrm{H}^{+}$; (iii) Raney Ni; (iv) polyphosphoric acid
35. The protein(s) that belong to the class of blue copper proteins is (are)
(a) ceruloplasmin
(b) superoxide dismutase
(c) hemocyanim
(d) azurin
36. The ion(s) that exhibit only charge transfer bands in the absorption spectra (UVvisible region) is/are
(a) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(b) $\left[\mathrm{CrO}_{4}\right]^{2-}$
$]^{2-}$ T
(c) $\left[\operatorname{ReO}_{4}\right]$
(d) $\left[\mathrm{NiO}_{2}\right]^{2-}$
37. The type(s_) of interaction(s) that hold layers of graphite together is(are)
(a) $\pi-\pi$ stacking
(b) van der Waals
(c) hydrogen bonding
(d) coulombic
38. TRUE statement (s) about Langmuir isotherm is (are)
(a) valid for monolayer coverage-
(b) all adsorption sites are equivalent
(c) there is dynamic equilibrium between free gas and adsorbed gas
(d) adsorption probability is independent of occupancy at the neighbouring sites
39. The $3 p_{z}$ orbital has
(a) one radial node
(b) two radial nodes

(c) there is dynamic equilibrium between free gas and adsorbed gas
(d) adsorption probability is independent of occupancy at the neighbouring sites
40. The diatomic molecule(s) that has (have) two π - type bonds is (are)
(a) B_{2}
(b) C_{2}
(c) N_{2}
(d) O_{2}

SECTION - C

Q. 41 - Q. 50 carry One mark each.

41. Among the following, the number of molecules that are aromatic is

[^4]dream high, beyond the sky Best Institute for IT T JAM | CSIR NET | GATE | NEET | JEE

42. The number of all possible isomers for the molecular formula $\mathrm{C}_{6} \mathrm{H}_{14}$ is \qquad
43. Hydrolysis of 15.45 g of benzonitrile produced 10.98 g of benzoic acid. The percentage yield of acid formed is
44. Acetic acid content in commercial vinegar was analyzed by titrating against 1.5 M NaOH solution. A 20 mL vinegar sample required 18 mL of titrant to given endpoint. The concentration of acetic acid in the vinegar (in $\mathrm{mol} \mathrm{L}^{-1}$) is -

45. The bond order of Be_{2} molecule is
46. The number of $\mathrm{P}-\mathrm{H}$ bonds in Hypophosphorus acid is \qquad
47. The isotope ${ }_{84}^{217} \mathrm{Po}$ undergoes one alpha and one beta particle emission sequentially to form an isotope ' X '. The number of neutrons in ' X ' is \qquad , AAA,
48. In a diffraction experiment with X -rays of wavelength $1.54 \AA$, a diffraction line corresponding to $2 \theta=20.8^{\circ}$ is observed. The inter-planar separation in \AA is \qquad

49. The a potential energy of interaction between two ions in an ionic compound is given by $U=1389.4\left[\begin{array}{l}\frac{\mathrm{Z}_{1} \mathrm{Z}_{2}}{\circ} \\ \mathrm{r} / \mathrm{A}\end{array}\right] \mathrm{kJ} \mathrm{mol}^{-1}$. Assuming that CaCl_{2} is linear molecule of length 5.6 , the potential energy for cacl_{2} molecule in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad
[^5]MSPIRTTOO ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
50. The enthalpy of formation for $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{C}(\mathrm{g})$ and $\mathrm{H}(\mathrm{g})$ are $-75,717$ and $218 \mathrm{~kJ} \mathrm{~mol}^{-}$ ${ }^{1}$, respectively. The enthalpy of the $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{kJ} \mathrm{mol}^{-1}$ is. \qquad

Q. 51 - Q. 60 carry TWO marks each

51. Specific rotation of the (R)-enantiomer of a chiral; compound is 48°. The specific rotation of a sample of this compound which contains 25% of (S)-enantiomer is
\qquad -
52. Among the following, the number of compounds, which can participates as 'diene' component in a Diels-Alder reaction is \qquad

53. Among the following, the number of molecules that possess C_{2} axis of symmetry is

$\mathrm{BF}_{3} \quad \mathrm{CHCl}_{3} \quad$ 2,5-dimethylthiophene

54. Effective nuclear charge for 3 d electron in vanadium (atomic number $=23$) according to Slater's rule is \qquad
55. The total number of isomer possible for the molecule $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]^{+}$is
\qquad
56. The bond angle in PBr_{3} is 101°. The percent ' S ' character of the central atom is
\qquad

ASPIRRTOO ACADEMY $^{\text {ASA }}$
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE [NEET | JEE
57. $\mathrm{Cu}(\mathrm{s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$

In the above reaction at 1 atm 298 K , if 6.36 g of copper is used. Assuming ideal gas behaviour, the volume of NO_{2} produced in litres is \qquad
58. The $\Delta \mathrm{H}^{\circ}$ for the reaction $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ at $400 \mathrm{~K} \mathrm{in}^{\mathrm{kJ} \mathrm{mol}}{ }^{-1}$ is \qquad Given at 298 K :

$$
\Delta \mathrm{H}_{\mathrm{f}}^{0} \quad \mathrm{C}_{\mathrm{p}}^{0}
$$

	$\mathrm{kJ} \mathrm{mol}^{-1}$	$\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
O_{2}	0	29.4
CO	-110	29.1
CO_{2}	-394	37.1

59. The rate constants for a reaction at 300 and 350 K are 8 and $160 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$, respectively. The activation energy of the reaction in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad [Given : $\mathrm{R}=8.314\left[\mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right.$].
60. A 10 L flask containing 10.8 g of $\mathrm{N}_{2} \mathrm{O}_{5}$ heated to 373 K , which leads to its decomposition atm, then the equation $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$. If the final pressure in the flask is 0.5 atm , then the partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$ in atm is \qquad [Given : $\mathrm{R}=0.0821 \mathrm{Latm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$]

KATA,

[^0]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|2 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^1]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)

[^2]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page 6 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^3]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 空 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 울 +918582979309

[^4]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|8 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^5]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 을 +918582979309 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

