dream high, beyond the sky Best Institute for ITI JAM | CSIR NET | GATE | NEET |JEE

IIT JAM 2013

1. The most polar compound among the following is:
(a) SF_{4}
(b) BF_{3}
(c) XeF_{4}
(d) SO_{3}
2. Which one of the following order of the carbonates is correct for their decomposition temperature?
(a) $\mathrm{BaCO}_{3}>\mathrm{CaCO}_{3}>\mathrm{SrCO}_{3}>\mathrm{MgCO}_{3}$
(b) $\mathrm{BaCO}_{3}>\mathrm{SrCO}_{3}>\mathrm{CaCO}_{3}>\mathrm{MgCO}_{3}$
(c) $\mathrm{MgCO}_{3}>\mathrm{CaCO}_{3}>\mathrm{SrCO}_{3}>\mathrm{BaCO}_{3}$
(d) $\mathrm{MgCO}_{3}>\mathrm{CaCO}_{3}>\mathrm{BaCO}_{3}>\mathrm{SrCO}_{3}$
3. The CORRECT order of CO vibrational stretching frequency in the following complexes is
(I) $\left(\mathrm{PF}_{3}\right)_{3} \mathrm{Mo}(\mathrm{CO})_{3}$
(II) $\left(\mathrm{PCl}_{3}\right)_{3} \mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{HIL})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{3} \mathrm{Mo}(\mathrm{CO})_{3}$
(a) I $<$ II $<$ III
(b) HI Cl <
(c) $\mathrm{H}<\mathrm{I}<\mathrm{HI}$
(d) III $<$ I $<$ II
4. Among the following, the ligand that BEST stabilizes low oxidation state of tungsten (W) is
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) NH_{3}
(c) CO
(d)
5. The function $y=x \exp \left(-x^{2}\right)$ has a minimum at $x=-\frac{1}{\sqrt{2}}$. The second derivative of the function at the minimum is
(a) $2 \sqrt{2} \exp$
(c) 0
(b)

HATA $_{\text {(d) }}$
(d) $-\sqrt{2} \exp$

6. For a particular reaction at constant temperature, a plot of inverse of reactant concentration $\left(\frac{1}{[\mathrm{~A}]}\right)$ versus time is a straight line with a slope of $4.0 \times 10^{-2} \mathrm{~L} \mathrm{~mol}^{-}$ ${ }^{1} \mathrm{~s}^{-1}$. the time required (in seconds) for 1.0 M of reactant to decrease to 0.25 M is
(a) 18.8
(b) 34.7
(c) 75.0
(d) 187.5
7. For a physisorption process, which one of the following statements is NOT correct?
(a) There are van der Waal's interactions between the adsorbate and the adsorbent.
(b) The process predominates at low temperature.

[^0]dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(c) The process cannot proceed beyond a monolayer.
(d) The process is reversible.
8. The product of the following reaction is

9. The CORRECT order of stability of the following carbonium ions is

(I)

(II)

(III)
(a) II $>$ I $>$ III
(b) III $>$ II $>$ I
(c) I $>$ III $>$ II
(d) II $>$ III $>$ I
10. Which one of the following statements is CORRECT
(a) Naturally occurring DNA has B-configuration.
(b) Nucleic acids are derived from proteins
(c) Proteins store genetic information
(d) Vitamins generally act as enzymes, \mathbf{A},

Fill in the blank questions.

11. The reaction of anhydrous FeCl_{2} with sodium-pentadienyl in ether gives an airstable diamagnetic orange solid, which on oxidation gives an air-sensitive paramagnetic blue-green compound in solution. The blue-green compound is
\qquad
12. CaO, VO and MnO have octahedral coordination of the metal ions in a rock-salt structure. The correct increasing order of their lattice enthalpies is \qquad
13. The shape of the inter-halide IF_{8}^{-}is \qquad
[^1]1SPIT11 O A ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE
14. The vapour pressures of solid and liquid chlorine are given by: $\log _{e} \mathrm{P}^{\text {solid }}=24-\frac{3900}{\mathrm{~T}}$ and $\log _{e} \mathrm{P}^{\text {liq }}=18-\frac{2600}{\mathrm{~T}}$, where $\mathrm{P}_{\text {solid }}$ and $\mathrm{P}_{\text {liq }}$ are the vapour pressures (in Torr) of solid and liquid chlorine near the triple point, respectively and T is the absolute temperature. The ratio of the slope of the solid-gas curve to the slope of the liquid-gas curve at the triple point in the P-T diagram is
\qquad (Fill in the blanks)
15. For unnormalized wave-function, $\psi(r, \theta, \phi)=\sin \theta \cos \phi\left(\frac{2 r}{a_{0}}-\left(\frac{r}{a_{0}}\right)^{2}\right) \exp \left(-\frac{r}{a_{0}}\right)$, the number of radial node(s) is \qquad (Fill in the blanks)
16. A hypothetical element (atomie weight $=300$) crystallizes in a simple cubic lattice. For this crystal, the first order X-ray diffraction with wavelength of 5 A appears at an angle of $30^{\circ} \mathrm{C}$. The density of the crystal is $\mathrm{g} \mathrm{cm}^{-3}$. [Avogadro number, $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}$ (Fill in the blanks)
17. $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{Zn}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{t})$

For the above reaction if the equilibrium constant at 298 K is represented by 10 x , then the value of x is [Given: The standard cell potential $E^{0}=2.4 \mathrm{~V}$ and $\frac{2.303}{F}=0.06 \mathrm{~V}$ at 298 K$]$
18. The rotational energy barrier between the most stable and the least stable conformations of 2, 3-dimethylbutane along $\mathrm{C}_{2}-\mathrm{C}_{3}$ boind is kcal mol $^{-}$ 1,
[Give: The energies ($\mathrm{kcal} \mathrm{mol}^{-1}$) for $\mathrm{H} / \mathrm{CH}_{3}$ eclipsing $=1,8, \mathrm{CH}_{3} / \mathrm{CH}_{3}$ eclipsing $=2.9$ and $\mathrm{CH}_{3} / \mathrm{CH}_{3}$ gauche $=0.9$]
\qquad
19. The number of peaks or signals in ${ }^{1} \mathrm{H}$ NMR of N, N-dimethylformamide (DMF) at $25^{\circ} \mathrm{C}$ is is \qquad
20. Calixene is a polar hydrocarbon with a high dipole moment. The most stable dipolar canonical structure is \qquad

calixene

[^2]aspiratioñacademr
dream high, beyond the sky Best Institute for IIT JAM | CSIR NET | GATE | NEET | JEE

Descriptive Questions

21. A mixture of $\mathrm{C}_{3} \mathrm{H}_{8}$ and oxygen in 1 L closed vessel has an internal pressure of 4 atm at $100^{\circ} \mathrm{C}$. When the mixture is ignited, the reaction produces $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ until all the oxygen is consumed. After the reaction, pressure of the vessel is 4.2 atm at the same temperature. Calculate the weight of oxygen present before the reaction. [Gas constant, $\mathrm{R}=0.082{\mathrm{Latm} \mathrm{mol}^{-1} \mathrm{~K}^{-1} \text {] }}^{2}$
22. The following reaction is carried out at 1 atm and $300 \mathrm{~K} .2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $\Delta \mathrm{U}$ for the above reaction is 550 kJ . Assuming ideal gas behaviour for H_{2} and O_{2}, calculate the value of $\triangle \mathrm{H}$. The value of gas constant, $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=$ $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
[Given: The volume of 1 mol of liquid water is 18 mL ûnder the above reaction condition]
23. At 298 K , calculate the solubility of metal sulphide, MS(S), in a saturated solution of $\mathrm{H}_{2} \mathrm{~S}$ where the concentration of $\mathrm{H}_{2} \mathrm{~S}$ and pH are maintained at 0.1 M and 3.0 , respectively. Given at 298 K , $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq}) \quad \mathrm{K}=10-7$
$\mathrm{MS}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{M}^{2+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})+-\mathrm{OH}(\mathrm{aq}) \mathrm{K}=5 \times 10^{-19}$
24. A solution containing 250 ppm of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ (formula weight $=250$) has an absorbance of 0.1 measured in 1 cm cell at 600 nm . Calculate the molar absorptivity (ε) of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \theta$ in $L M^{-1} \mathrm{~cm}^{-1}$. When 25 mL of the above solution is titrated against Na2EDTA(aq) solution, it consumes 50 mL of Na2EDTA(aq) solution. Calculate the concentration of Na2EDTA (aq) solution in moles L^{-1}.
25. A solution containing 250 ppm of $\mathrm{CuSO4} .5 \mathrm{H} 2 \mathrm{O}$ (formula weight $=250$) has an absorbance of 0.1 measured in 1 cm cell at 600 nm . Calculate the molar absorptivity (ϵ) of $\mathrm{CuSO} 4.5 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{L} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. When 25 mL of Na_{2} EDTA (aq) solution is titrated against Na2EDTA (aq) solution, it consumes at 50 mL of Na2EDTA(aq) solution. Calculate the concentration of Na2EDTA(aq) solution in moles L^{-1}.
26. Assume the complex $\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{SCN})_{2}\right]$ is paramagnetic. The analogous complex of $\mathrm{Pd}(\mathrm{II})$ is diamagnetic. Draw all the probable isomers for both the complexes considering SCN- is an ambidentate ligand.
[^3]ASPIRATIONT ${ }_{\text {academy }}$
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE
27. Write the structures of A to E in the following reaction sequence:

28. Write the structures of F to J in the following reaction scheme:

DiBAL-H
(1 equiv)
[DiBAL-H = diisobutylaluminium hydride]
29. Propose a mechanism for the following reaction. Show stepwise correct reactive intermediates

30. Complete the following reaction sequence and write structures of K to 0 .

[^4]
[^0]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |
 Page | 1

[^1]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|2 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^2]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 눌 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 욜
 +91 8582979309
 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^3]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|4 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^4]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 寝 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 륜 +918582979309
 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

