dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE

IIT JAM 2012

1. Molecular shape of SOCl_{2} is:
(a) Square planar
(b) Trigonal pyramidal
(c) Triangular planar
(d) T-shape
2. Number of three-centre two-electron(3c-2e) bonds present in diborane is:
(a) 2
(b) 4
(c) 6
(d) 8
3. The lattice energy of LiF calculated from Born-Lande equation $-1000 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Assume that for both LiE and Mg0 the Madelung constants, interionic distances and Born exponents have the same value.
The lattice energy of MgO in $\mathrm{kJ} \mathrm{mol}^{-1}$ is:
(a) -4000
(b) -2000
(c) 2000
(d) 4000
4. The compound formed formed by dissolving elemental gold in aqua regia is:
(a) AuCl
(b) AuNO_{3}
(c) $\mathrm{H}\left[\mathrm{AuCl}_{4}\right.$
(d) $\mathrm{H}\left[\mathrm{Au}\left(\mathrm{NO}_{3}\right)_{4}\right]$
5. Number of moles of ions produced by complete dissociation of one mole of Mohr's salt in water is:
(a) 3
(b) 4
(c) 5
(d) 6
6. The terachloro complexes of $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ respectively, are (atomic numbers of Ni and Pd are 28 and 46 respectively)
(a) diamagnetic and diamagnetic
(b) paramagnetic and paramagnetic
(c) diamagnetic and paramágnetic
(d) paramagnetic and diamagnetic
7. The total number of steps involved and number of beta particles emitted in the spontaneous decay of
${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{82}^{208} \mathrm{~Pb}$ respectively, are
(a) 8 and 6
(b) 14 and 6
(c) 6 and 8
(d) 14 and 8
8. A filter paper moistioned with ammonical sodium nitroprusside solution turns violet on contact with a drop of alkaline $\mathrm{Na}_{2} \mathrm{~S}$ solution. The violet colour is due to the formation of
(a) $\left[\mathrm{Fe}(\mathrm{SCN})_{5}(\mathrm{NO})\right]^{1-}$
(b) $\left[\mathrm{Fe}(\mathrm{SCN})_{5}(\mathrm{NO})\right]^{2-}$
(c) $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NOS})\right]^{3-}$
(d) $\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NOS})\right]^{4-}$
[^0]1SPRY1O ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
9. The species/compounds that are aromatic among the following are

(b) P and Q
(c) Q and S
(d) P and S
(a) R and S
10. The major product obtained in the reaction below is

11. The rates of acetolysis for the following norbornyl derivatives are in the order

P

Q

R
(a) R $>$ Q $>$ P
(b) Q
$Q>R>P \quad$ (c) $P>R>Q$
(d) R $>$ P $>$ Q
12. The Haworth projection for α-anomer of D-glueose is:
(a)

(b)

(c)

(d)

13. The complementary DNA sequence of the given DNA 5^{\prime}-G-A-A-T-T-C-3' is
(a) 5'-C-T-T-A-A-G-3'
(b) 5'-C-U-U-A-A-G-3'
(c) $3^{\prime}-\mathrm{C}-\mathrm{T}-\mathrm{T}-\mathrm{A}-\mathrm{A}-\mathrm{G}-\mathrm{S}^{\prime}$
(d) 3^{\prime}-G-A-A-T-T-C-5'

ASPIRATIONTACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
14. The order of nucleophilicity of the following anions in a $S_{N} 2$ reaction is:

P

Q

R

S
(a) Q $>$ R $>$ S $>$ P
(b) Q $>$ P $>$ R $>$ S
(c) Q $>$ R $>$ P $>$ S
(d) P $>$ S $>$ R $>$ Q
15. The pair of conformation that has maximum energy differemce is:
(a)

 and

(c)
 and

(d)
 /
16. The major mono-sulfonation product of α-tetralone is:
(a)

\rightarrow

(c)

(d)

17. Electrophilic nitrations of the following compounds follow the trend

P

Q

R

S
(a) S $>$ R $>$ P $>$ Q
(b) R $>$ S $>$ P $>$ Q
(c) R $>$ P $>$ S $>$ Q
(d) P $>$ S $>$ R $>$ Q
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
18. The compounds those would not respond to tests of both nitrogen and sulphur with sodium fusion extracts are

I

II

III

IV
(a) I and III
(b) III and IV
(c) I and IV
(d) II and IV
19. The correct epimeric pair of the following is:

Q
R
S
(a) $\begin{gathered}\mathrm{P} \text { and } \mathrm{Q}\end{gathered}$
(b) R and Q
(c) Q and S
(d) and S
20. α-Farnesene shown below is a

(a) diterpene having two isoprene units
(b) triterpene having three isoprene units
(c) triterpene having four isoprene units
(d) sesquiterpene having threeisoprene units.
21. For the equilibrium $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$, the equilibrium constant, K_{P} is expressed as
(a) $3^{3} K_{P}=\frac{P_{\mathrm{NH}_{3}}}{\mathrm{P}_{\mathrm{N}_{2}}^{2}}$
(b) $3^{3} \mathrm{~K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{NH}_{3}}^{2}}{\mathrm{P}_{\mathrm{N}_{2}} \mathrm{P}_{\mathrm{H}_{2}}^{3}}$
(c) $3^{3} K_{\mathrm{P}}=\frac{P_{\mathrm{NH}_{3}}^{2}}{P_{N_{2}}^{4}}$
(d) $3^{3 / 2} K_{P}^{1 / 2}=\frac{P_{\mathrm{NH}_{3}}^{2}}{P_{N_{2}}^{4}}$
22. The average speed of $\mathrm{H}_{2}, \mathrm{~N}_{2}$ and O_{2} gas molecules is in the order
(a) $\mathrm{H}_{2}>\mathrm{N}_{2}>\mathrm{O}_{2}$
(b) $\mathrm{O}_{2}>\mathrm{N}_{2}>\mathrm{H}_{2}$
(c) $\mathrm{H}_{2}>\mathrm{O}_{2}>\mathrm{N}_{2}$
(d) $\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{H}_{2}$

[^1]ASPIRATIONTACADEMY
dream high, beyond the sky Best Institute for IIT JAM | CSIR NET | GATE | NEET | JEE
23. The enthalpy of vaporization $\left(\Delta_{\text {vap }} \mathrm{H}\right)$ is zero at
(a) Boyle temperature
(b) critical temperature
(c) inversion temperature
(d) boiling temperature
24. The half-life of any zero-order reaction is
(a) independent of concentration
(b) proportional to inverse of concentration
(c) proportional to concentration
(d) proportional to square of the concentration
25. The molality of $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4}$ solution that has the same ionic strength as $1 \mathrm{~mol} \mathrm{~kg}^{-1}$ solution of KCl is
(a) $1 / 3 \mathrm{~mol} \mathrm{~kg}^{-1}$
(b) $1 / 2 \mathrm{~mol} \mathrm{~kg}^{-1}$
(c) $2 / 5 \mathrm{~mol} \mathrm{~kg}^{-1}$
(d) $3 / 5 \mathrm{~mol} \mathrm{~kg}^{-1}$
26. The standard enthalpy of formation $\left(\Delta_{\mathrm{f}} \mathrm{H}_{300}^{0}\right)$ at 1 bar and 300 K for the formation of $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}(\mathrm{g})$ fromits constituent elements in the standard state is $-900 \mathrm{~kJ} \mathrm{~mol}^{-}$ ${ }^{1}$. Given $R=8.3 \mathrm{~J} \mathrm{~K}^{-1} / \mathrm{mol}^{-1}$, the standard internal energy of formation $\left(\Delta_{f} U_{300}^{0}\right)$ at the same pressure and temperature is
(a) -905 kJ mol-
(b) $-895 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) 895 kJ mol
(d) $905 \mathrm{~kJ} \mathrm{~mol}^{-1}$
27. The percent transmittance of a solution having absorbance (optical density) 1.0 is
(a) 1
(b) 10
(c) 50
(d) 99
28. The matrix which transforms
$\binom{x}{y}$ to $\binom{-y}{-x}$ is:
(a) $\left(\begin{array}{ll}-1 & -1\end{array}\right)$
(b) $\binom{-1}{-1} \wedge A T A$
(c)
$\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
(d) $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
29. A concentration cell with two hydrogen electrodes at two different pressure is depicted as

$$
\begin{gathered}
\mathrm{H}_{2}(\mathrm{~g})(\mathrm{Pt}) \\
\mathrm{p}_{\mathrm{H}_{2}}=\mathrm{p}_{1}
\end{gathered}|\mathrm{HCl}(\mathrm{aq})| \begin{gathered}
\mathrm{H}_{2}(\mathrm{~g})(\mathrm{Pt}) \\
\mathrm{P}_{\mathrm{H}_{2}}=\mathrm{p}_{2}
\end{gathered}
$$

The potential ($\mathrm{E}_{\text {cell }}$) of the cell is
(a) $\frac{R T}{F} \ln \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}$
(b) $\frac{\mathrm{RT}}{\mathrm{F}} \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$
(c) $\frac{R T}{2 F} \ln \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}$
(d) $\frac{\mathrm{RT}}{2 \mathrm{~F}} \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$ aspiratioñacademy
dream high, beyond the sky Best Institute for ITI JAM | CSIR NET | GATE | NEET |JEE
30. An aqueous solution containing $1 \mathrm{~g} \mathrm{~L}^{-1}$ of a polymer exerts osmotic pressure of 4 torr at 300 K . Given $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm}$, the molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ of the polymer is
(a) 4500
(b) 4564
(c) 4674
(d) 4800

Descriptive Questions

31. (a) Identify the most acidic compound from the following: $\mathrm{CH}_{3}-\mathrm{CH}_{3}, \mathrm{CH}_{2}=\mathrm{CH}_{2}$ and $\mathrm{CH} \equiv \mathrm{CH}$, and justify your answer. Draw overlap of the orbitals to show bonding in the most acidic compound using the concept of hybridization.
(b) Write a balanced chemical equation to represent acid-base reaction of orthoboric acid in water. Addition of ethylene glycol to aqueous orthoboric acid enhances its acidity. Explain the above statement using appropriate chemical equation.
32. (a) Draw the unit cell structure of NaCl . Calculate the limiting radius ratio of any ionic solid having NaCllike structure.
(b) Give molecular formula and structure of the compound formed by reaction of $\mathrm{Be}(\mathrm{OH})_{2}$ with acêtic acid.
33. (a) The spin-only magnetic moments of $\mathrm{K}_{3}\left[\mathrm{Fe}\right.$ (oxalate) $\left.3_{3}\right]$ and $\mathrm{K}_{3}\left[\mathrm{Ru}\right.$ (oxalate) $\left.{ }_{3}\right]$ are $5.91 \mu_{\mathrm{B}}$ and $1.73 \mu_{\mathrm{B}}$, respectively. Write down their ligand field electronic configuration. Justify your answer. Atomic numbers of Fe and Ru are 26 and 44 respectively.
(b) Draw the structures of $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{2}$ and NO_{2}. Arrange them in the increasing order of $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles

KATA.

34. (a) Show with labels the splitting of d-orbitals in an octahedral ligand field. Calculate the CFSE of (i) high spin d^{6} and (ii) low spin d^{6} metal ions in octahedral field.
(b) Schematically represent orbital overlaps in metal carbonyls. Show the correct signs of the lobes.
35. (a) A coordination compound is composed of one Co (III), one chloride, one sulphate and four molecules of ammonia. The aqueous solution of the compound gives no precipitate when combined with aqueous BaCl_{2}, while a white precipitate is formed with aqueous AgNO_{3} solution. Draw its structure and explain the observations with chemical equations.
[^2]PSPIRRTOT ACADEMY $^{\text {ASA }}$
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE | NEET |JEE
(b) Draw the structures of dimethylglyoxime $\left(\mathrm{DMGH}_{2}\right)$ and its $\mathrm{Ni}(\mathrm{II})$ complex formed in aqueous ammonia.
36. (a) Write the structures of \mathbf{E}, \mathbf{F} and \mathbf{G} in the following scheme of reactions.

(b) Identify the structures of H and I in the following synthetic transformation

37. (a) Complete the following reaction sequence with appropriate structure of \mathbf{J}, \mathbf{K} and \mathbf{L}.

(cyclic enone)
(b) Identify the structures of \mathbf{M} and \mathbf{N} in the following \$ynthetic transformation

38. (a) In the following reaction scheme, write the structure of \mathbf{O}, \mathbf{P} and \mathbf{Q}

(b) Given below are structures of some natural products. Identify them as vitamin A, B_{6}, C and D and classify them according to their classes (isoprenoid, alkaloid, carbohydrate and steroid)

ASPIRATIOANAConemr
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE

39. (a) Write the appropriate structures for \mathbf{R}, \mathbf{S} and \mathbf{T} in the following scheme.

(b) Choose the correct stereoisomer between U and V that would furnish W on controlled hydrolysis, Write the stable conformation of W.

$\xrightarrow[\substack{\text { controlled } \\ \text { hydrolysis }}]{\mathrm{HO}^{-}} \mathbf{W}$
40. The mechanism of isomerization of cyclobutene (CB) to 1, 3-butadiene (BD) is as follows.
$\mathrm{CB}+\mathrm{CB} \xrightarrow{\mathrm{k}_{1}} \mathrm{CB}^{*}+\mathrm{CB}$
$\mathrm{CB}^{*}+\mathrm{CB} \xrightarrow{\mathrm{k}_{-1}} \mathrm{CB}+\mathrm{CB}$
$\mathrm{CB}^{*} \xrightarrow{\mathrm{k}_{2}} \mathrm{BD}$

[^3]dream high, beyond the sky Best Institute for IIT JAM | CSIR NET | GATE [NEET | JEE
(a) Show that the rate law is $\frac{\mathrm{d}[\mathrm{DB}]}{\mathrm{dt}}=\frac{\mathrm{k}_{2} \cdot \mathrm{k}_{1} \cdot[\mathrm{CB}]^{2}}{\mathrm{k}_{-1} \cdot[\mathrm{CB}]+\mathrm{k}_{2}}$
(b) The apparent first-order rate constant, $\mathrm{k}_{\text {app }}=\frac{\mathrm{k}_{2} \cdot \mathrm{k}_{1} \cdot[\mathrm{CB}]}{\mathrm{k}_{-1} \cdot[\mathrm{CB}]+\mathrm{k}_{2}}$. At the CB concentration of $1 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$, the value of kapp reaches 50% of its limiting value obtained at very high concentrations of CB. Evaluate the ratio $\frac{\mathrm{k}_{2}}{\mathrm{k}_{-1}}$. 9
41. (a) The molar conductance of $0.012 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of chloro-acetic acid is $100 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The ion conductance of chloro-acetate and H^{+}ions are $50 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and $350 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, respectively.

Calculate (i) degree of dissociation and pK_{a} of chloro-acetic acid, and (ii) H^{+}ion concentration in the solution
(b) Sketch the conductivity versus concentration of base curves for the titration of aqueous solutions of acetic acid (i) with NaOH , and (ii) with $\mathrm{NH}_{4} \mathrm{OH}$.
42. A solution of a free particle Schrödinger equation $\frac{h^{2}}{8 \pi^{2} m} \frac{d^{2} \psi(x)}{d x^{2}}=E \psi(x)$ is $\psi(x)=e^{i k x}=\cos k x+i s i n k x$
(a) Derive expressions for energy ' E ' and momentum ' P ' of the particle.
(b) Using the above relations, show that the wavelength (λ) is $\frac{h}{\mathrm{~h}}$.
43. (a) Sketch the temperature-composition phase diagram at 1 atm pressure for the ethanol-water system.
(i) Label all the areas in the diagram.
(ii) Indicate the temperature at which the composition of the vapour is same as that of the liquid. What is this mixture known as?
(b) Estimate the pressure necessary to melt ice at $-10^{\circ} \mathrm{C}$ if the molar volume of liquid water is 18.0 mL and molar volume of ice is 19.64 mL . The entropy change for the melting process is $16.3 \mathrm{~J} \mathrm{~K}^{-1}$. Assume that the molar volumes and entropy change remain constant in this temperature range. [100 J = 1 bar] 6
44. (a) (i) Show that for n moles of a van der Waal's gas, $\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{n^{2} a}{V^{2}}$.

1SPMAV B ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(ii) Can a gas that obeys the equation of state $\mathrm{P}(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}$ be liquefied? Explain.
(b) Consider idea mixing of 2 moles of toluene and 2 moles of benzene at 1 atm and 300 K . Calculate the values of $\Delta_{\text {mix }} \mathrm{V}, \Delta_{\text {mix }} \mathrm{U}, \Delta_{\text {mix }} \mathrm{H}, \Delta_{\text {mix }} \mathrm{G}$, and $\Delta_{\text {mix }} \mathrm{S}$ for the process. $(\ln 2=0.69)$

[^0]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 늘 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 胥 +918582979309
 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^1]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page | 4 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^2]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|6 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^3]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|8 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

