dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET |JEE

IIT JAM 2011

1. The pair of semimetals in the following is:
(a) Al, Si
(b) Ge, As
(c) Sb, Te
(d)Ca, B
2. The most probable oxidation states for both Cr and Mo are
(a) $+2,+3,+4$
(b) $+2,+3,+5$
(c) $+2,+3,+6$
(d) $+3,+4,+5$
3. The correct order of acidic character is:
(a) $\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{MgO}-\mathrm{SiO}_{2}>\mathrm{P}_{4} \mathrm{O}_{10}$
(b) $\mathrm{P}_{4} \mathrm{O}_{10}>\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{MgO}>\mathrm{SiO}_{2}$
(c) $\mathrm{P}_{4} \mathrm{O}_{10}>\mathrm{SiO}_{2}>\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{MgO}$
(d) $\mathrm{SiO}_{2}>\mathrm{P}_{4} \mathrm{O}_{10}>\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{MgO}$
4. The pair of amphoteric oxides is:
(a)

(b) $\mathrm{V}_{2} \mathrm{O}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}$
(c) $\mathrm{VO}_{2}, \mathrm{Cr}_{2} \mathrm{O}_{3}$
(d) $\mathrm{V}_{2} \mathrm{O}_{5}, \mathrm{CrO}_{3}$
5. In the structure of $\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}^{2-}$
(a) All four B atoms are trigonal planar
(b) One B atom is tetrahedral and the other three are trigonal planar.
(c) Three B atoms are tetrahedral and one is trigonal planar.
(d) Two B atoms are tetrahedral and the other two are trigonal planar.
6. The pH of an aqueous solution of Al^{3+} is likely to be
(a) Neutral
(b) Acidic
(c) Slightly basic
(d) Highly basic.
7. Hydrolysis of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ and $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$ leads to
(a) linear chain and cross-linked silicones, respectively

1SPM11【 ACADEMY
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE | NEET | JEE
(b) Cross-linked and linear chain silicones, respectively.
(c) Linear chain silicones only
(d) Cross-linked silicones only.
8. The oxide that has the inverse spinel strucrure is:
(a) $\mathrm{FeCr}_{2} \mathrm{O}_{4}$
(b) $\mathrm{MnCr}_{2} \mathrm{O}_{4}$
(c) $\mathrm{CoAl}_{2} \mathrm{O}_{4}$
(d) $\mathrm{Fe}_{2} \mathrm{CoO}_{4}$
9. The transition metal monoxide that shows metallic conductivity is:
(a) NiO
(b) MnO
01
(c) TiO
(d) CoO
10. The metal that is extracted by the reduction method is
(a) Al
(b) Au
(c) Hg
(d) Mg
11. The most viscous liquid is:
(a) Water
(b) Methanol
(c) Ethylene glycol
(d) Glycerol
12. In ammonoical buffer, oxine (8-hydroxyquinoline) forms yellow precipitate with
(a) Mg (II)
(b) $\mathrm{Ca}(\mathrm{H})$
(c) Ba(II)
(d) $\mathrm{Sr}(\mathrm{II})$

$H_{A} A_{1}$

13. Addition of an aqueous solution of $\mathrm{Fe}(\mathrm{II})$ to potassium hexacyanochromate (III) produces a brickred complex, which turns dark green at $100^{\circ} \mathrm{C}$. The dark green complex is:
(a) $\mathrm{Fe}_{4}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]_{3}$
(b) $\mathrm{KFe}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$
(c) $\mathrm{KCr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(d) $\mathrm{Fe}\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$
14. In the following equation X is:

$$
{ }_{95}^{241} \mathrm{Am}+\alpha \rightarrow{ }_{97}^{243} \mathrm{Bk}+\mathrm{X}
$$

[^0]1SPRRATO A AcadEmy
dream high, beyond the sky Best Institute for IIT JAM | CSIR NET | GATE [NEET |JEE
(a) $2{ }_{0}^{1} n$
(b) ${ }_{0}^{1} n$
(c) $2_{1}^{1} \mathrm{n}$
(d) ${ }_{2}^{4} \mathrm{He}$
15. Based on the principle of equipartition of energy, the molar heat capacity of CO_{2} at constant volume $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ is
(a) 3.5 R
(b) 6 R
(c) 6.5 R
(d) $9 R$
16. One mole of a van der Waal's gas undergoes reversible isothermal transformation from an initial volume V_{1} to a final volume V_{2}. The expression for the work done is

17. The scalar product of two vectors u and v, where $u=2 \hat{i}+3 \hat{j}-5 k$ and $v=\hat{i}+\hat{j}+3 k$, is:
(a) -10
(b) $2 \hat{i}+3 \hat{j}-15 k$
(c) $3 \hat{i}+4 \hat{j}-2 \mathrm{k}$
(d) 10
18. The minimum concentration of silver ions is required to start the precipitation of $\mathrm{Ag}_{2} \mathrm{~S}\left(\mathrm{~K}_{\mathrm{sp}}=1 \times 10^{-51}\right)$ in a 0.1 M solution of S^{2-} is
(a) $1 \times 10^{-49} \mathrm{M}$
(b) $1 \times 10^{-59} \mathrm{M}$
(c) $1 \times 10^{-26} \mathrm{M}$
(d) $1 \times 10^{-25} \mathrm{M}$
19. Identify the correct statement regarding Einstein's photoelectric effect
(a) The number of electrons ejected depends on the wavelength of incident radiation.
(b) Electron ejection can occur at any wavelength of incident radiation.
(c) The number of electrons ejected at a given incident wavelength depends on the intensity of the radiation.

[^1]1SPRRATO A ACADEMY
dream high, beyond the sky Best Institute for ITTJAM | CSIR NET | GATE [NEET | JEE
(d) The kinetic energy of the ejected electrons is independent of the wavelength of incident radiation.
20. The hydrolysis constant $\left(\mathrm{K}_{h}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}$ is $5.6 \times 10-10$. The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in a 0.1 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$ at equilibrium is
(a) $\sqrt{5.6 \times 10^{-11}}$
(b) $\sqrt{5.6 \times 10^{-10}}$
(c) 5.6×10^{-10}
(d) 2.8×10^{-5}
21. The acid dissociation constant (Ka) for $\mathrm{HCOOH}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{ClCCOH}$ and HCN at $25^{\circ} \mathrm{C}$ are $1.8 \times 10^{-4}, 1.8 \times 1.0^{-5}, 1.4 \times 10^{-3}$ and $4.8 \times 10-10$ respectively. The acid that gives highest pH at the equivalence point when 0.2 M solution of each acid is titrated with a 0.2 M solution of sodium hydroxide is
(a) HCOOH
(b) $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{CH}_{2} \mathrm{ClCOOH}$
(d) HCN
22. For an ideal gas/undergoing reversible Carnot Cycle, the plot of enthalpy (H) versus entropy (S) is

23. Hybridizations of the atoms indicated with the asterisk (*) in the following compounds sequentially

(a) $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$

(b) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$

[^2]ASPIRATIONACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(c) $\mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
(d) $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$
24. The Cahn-Ingold-Prelog (CIP) priorities of the groups and the absolute configuration (R/S) of The following compounds are

(a) $\mathrm{CH}_{2} \mathrm{OH}>\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{CH}=\mathrm{CH}_{2}>\mathrm{CH}_{3}$ and S
(b) $\mathrm{CH}_{2} \mathrm{OH}>\mathrm{CH}=\mathrm{CH}_{2}>\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{CH}_{3}$ and S
(c) $\mathrm{CH}_{2} \mathrm{OH}>\mathrm{CH}=\mathrm{CH}_{2}>\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{CH}_{3}$ and R
(d) $\mathrm{CH}_{2} \mathrm{OH}>\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}>\mathrm{CH}=\mathrm{CH}_{2}>\mathrm{CH}_{3}$ and R
25. The optically active stereoisomer of the following compound is:
 KATA,

(a)
(b)

(d)

[^3]1SPMT1O IACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
26. The correct relationship within each pair of the natural products is:
(a) Camphor-terpene; insulin - protein: nicotine - alkaloids; streptomycin carbohydrate
(b) Camphor-terpene; insulin - carbohydrate; nicotine - alkaloid; streptomycin lipid
(c) Camphor - alkaloid; insulin - protein; nicotine - terpene; streptomycin carbohydrate.
(d) Camphor - carbohydrate; insulin - protein; nicotine - alkaloid; streptomycin - terpene.
27. The correct sequence of relationships between the com pounds of the following irs i-iv is:
(i)

(iii)

(ii)

(iv)

 - 1 A 4 , $\|^{-}$
(a) Identical, enantiomers, diastereomers and structural isomers.
(b) Enantiomers, identical, structural isomers and diastereomers.
(c) Enantiomers, identical, diasteromers and structural isomers.
(d) Identical, identical, diasteremers and structural isomers.
28. The INCORRECT statement in the following is:
(a) The nucleobase paris are aligned perpendicular to the helical axis in DNA.
(b) RNA contains uracil and thymine, but DNA contains only thymine.

[^4]ASPIRATIONT ${ }_{\text {ACADEMY }}$
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
(c) All naturally occurring amino acids with the exception of glycine are chiral
(d) All enzymes are proteins, but all proteins are not necessarily enzymes.
29. The Product P and Q in the following reactions, respectively, are

30. The major product in the following reaction is:

Descriptive Questions

1SPM11【 A ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
31. In the following reactions, identify X, Y and Z
$\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{S} \xrightarrow{\text { boiling water }} \mathrm{X}$ (colorless complex)
$\mathrm{AgBr} \xrightarrow{\text { excess } X} Y$ (soluble complex)
$\mathrm{X}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { boiling water }} \mathrm{Z}+\mathrm{HCl}$
(b) Draw the structures of $\mathrm{S}_{4} \mathrm{~N}_{4} \mathrm{H}_{4}$ and $\mathrm{N}_{4} \mathrm{~S}_{4} \mathrm{~F}_{4}$.
32. (a) The magnetic moment of $\left[\mathrm{Fe}(\text { phen })_{2}(\mathrm{NCS})_{2}\right]$ varies with temperature. The magnetic moments at 200 K and 50 K are 4.9 B.M. and 0 B.M., respectively. Write the d-electron configurations of Fe at both temperatures and give reason for the observed change in the magnetic moment. (phen $=1,10-$ phenanthroline)
(b) PCl_{5} exists as a discrete covalent molecule in the gaseous state, but is ionic in the solid state. Draw the structures of PCl_{5} in gaseous and solid states.

33. In the following equilibrium and reactions, identify species B to E.

Write the balanced chemical equation for the conversion of C to E .
$\mathrm{A} \xrightarrow{\mathrm{pH}>6} \mathrm{~B} \stackrel{\text { dil. } \mathrm{HCl}}{\stackrel{ }{\rightleftharpoons}} \mathrm{C}$

- oxide of Cr yellow color
strong oxidizing agent
- solid
- no d-electrons
$\mathrm{B}+$ diphenylcarbazide $\longrightarrow \mathrm{D}$ (violet color)
$\mathrm{C}+\mathrm{HCl} \longrightarrow \mathrm{E}$ (greenish yellow gas)

34. (a) Identify species A and C in the following.

Write the balanced chemical equation for the conversion of A to A^{3+}.

[^5]1SPMT1 O ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE
$\mathrm{A}+$ aqua regia $\longrightarrow \mathrm{A}^{3+}+\mathrm{NO}$
$\mathrm{A}^{3+}+\mathrm{I}^{-} \longrightarrow \mathrm{B}$ (black precipitate)
$\mathrm{B}+\mathrm{I}^{-}($excess $) \rightleftharpoons \mathrm{C}$ (orange color)
Hint: C on the dilution with water gives B
(b) Draw the structures of X and Y in the following reactions.
(i) Borazine $+\mathrm{HCl} \longrightarrow \mathrm{X}$
(ii) Borazine $+\mathrm{Br}_{2} \longrightarrow \mathrm{Y}$
35. (a) The molar conductances at infinite dilution for $\mathrm{BaCl}_{2}, \mathrm{KCl}, \mathrm{K}_{2} \mathrm{SO}_{4}$ and Cl^{-}are 280, 150, 300 and $76 \Omega^{-1} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$, respectively. Calculate the transport number of Ba^{2+} in BaSO 4 solution at infinite dilution.
(b) If 4 moles of a $\mathbf{M X} \mathbf{K}_{2}$ salt in 1 kg of water raises the boiling point of water by 3.2 K , calculate the degree of dissociation of $\mathbf{M} \mathbf{X}_{2}$ in the solution. (For water, $\mathrm{K}_{\mathrm{b}_{1}}=0.5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
36. (a) For the reaction $\mathbf{R} \rightarrow \mathbf{P}$, the plot of $\ln [\mathbf{R}]$ versus time (t) gives a straight line with a negative slope. The half life for the reaction is 3 minutes.
$(\ln 2=0.693, \ln 0.1=-2.303)$
(i) Derive the expression for $\mathrm{t}_{1 / 2}$.
(ii) Calculate the time requifed for the concentration of \mathbf{R} to decrease to 10% of its initial value
(b) Shown below is the Jablonski diagram that describes various photo-physical processes. The solid arrows represent radiative transitions and the wavy arrow represents a non-radiative transition.
asplratioñacaenemr
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE

(i) Name the photo-physical pathways \mathbf{X}, \mathbf{Y} and \mathbf{Z}.
(ii) Which of the radiative decays is faster?
37. (a) (i) Given that $\Delta G=-n F E$, derive the expression for the temperature dependence of the cell potential (E) in terms of the change in entropy (ΔS).
(ii) For a cell reaction, E (at $25^{\circ} \mathrm{C}$) $=1.26 \mathrm{~V}, \mathrm{n}=2$ and $\Delta \mathrm{S}=-96.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Calculate E at $85^{\circ} \mathrm{C}$ by assuming $\Delta \mathrm{S}$ to be independent of temperature.

(b) The phase diagram for the lead-antimony system at a certain pressure is given below.

(i) Identify the phases and components in region I and region II.
(ii) Calculate the number of degrees of freedom (variance) at point M.
38. (a) One mole of an ideal gas initially at 300 K and at a pressure of 10 atm undergoes adiabatic expansion
(i) Reversibly and

1SPM11【 A ACADEMY
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE | NEET | JEE
(ii) Irreversibly against a constant external pressure of 2 atm until the final pressure becomes equal to the external pressure.

Calculate $\Delta \mathrm{S}_{\text {system }}$ for (i) and (ii). For (ii), express the final answer in terms of R.
Given: Molar heat capacity at constant volume $C_{v, m}=3 R / 2$
(b) For the following equilibrium at $300^{\circ} \mathrm{C}, \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

Calculate K_{P} when $\mathrm{N}_{2} \mathrm{O}_{4}$ is 30% dissociated and the total pressure is 2 bar.
39. (a) The Maxwell probability distribution of molecular speeds for a gas is

Where, y is the speed, m is the mass of a gas molecule and k the Boltzmann constant.
(i) Use $F(v)$ to show that the most probable speed $v_{m p}$ is given by the expression

(ii) Use $\mathrm{R}=8$ J K-1 mol ${ }^{-1}$ in the above expression to calculate the v_{mp} for $\mathrm{CH}_{4}(\mathrm{~g})$ at $127^{\circ} \mathrm{C}$.
(b) The wave function of a quantum state of hydrogen atom with principal quantum number $\mathrm{n}=2$ is

$$
\psi_{2 l m}(r, \theta, \phi)=\frac{1}{\sqrt{32 \pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(2-\frac{r}{a_{0}}\right) \exp \left(-\frac{r}{2 a_{0}}\right)
$$

(i) Identify the values of quantum number ℓ and m and hence the atomic orbital.
(ii) Find where the radial node of the wave function occurs.
40. (a) Write the possible substitution products in the following reactions. Indicate the types of mechanisms $\left(\mathrm{S}_{\mathrm{N}} 1 / \mathrm{S}_{\mathrm{N}} 2\right)$ that is/are operative in each reaction.

[^6]ASPIRPTOT ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE

ii)

(b) Write the elimination products A to C in the following reaction. Identify the major product

41. (a) Write the structures of A to ℓ in the following reaction sequence.

C
(b) Write the structures of D and E in the reactions given below.

$$
\begin{aligned}
& \text { 4. } \mathrm{H}_{3} \mathrm{PO}_{2}
\end{aligned}
$$

42. (a) Write the structures of A to C in the following reaction sequence.

(b) Write the structures of D and E in the following reaction.

[^7]asplrationiaconear
dream high, beyond the sky
Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE

43. Write the structures of products A to E in the following reaction sequence.

44. Oxanamide 0 , a tranquilizer, is synthesized according to the following reaction scheme. Write the missing structures and reagents K to 0.

[^8]asplrationiacoemr
dream high, beyond the sky Best Institute for IITJAM | CSIR NET | GATE [NEET |JEE

[^0]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 올 +918582979309
 Page|2 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^1]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 을 +918582979309

[^2]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 $+918582979309$
 Page|4 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^3]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 른 +9170032 68624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 察 +918582979309 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^4]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page 6 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^5]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page|8 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^6]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 을 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 운 +918582979309
 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |
 Page | 11

[^7]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 눌 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 +91 8582979309
 Page |12 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

[^8]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)

