1SPRRATO A AcADEMY
dream high, beyond the sky Best Institute for IIT JAM | CSIR NET | GATE [NEET | JEE

IIT JAM 2007

1. The compound, which
(i) Reacts rapidly with acetyl chloride
(ii) Does not rapidly with acetyl chloride
(iii) Does not from a yellow precipitate with excess of iodine in aqueous alkali is
(a) Acetone
(b) Diethyl ether
(c) 2-methyl-2-propanol
(d) Ethanol
2. The given compounds 1 and 2 are

1

2
(a) Identical
(c) Enantiomeric

2 (b) Diastereomeric
(d) Constitutionally isomeric.
3. The correct order of dipole moments (μ) of the following compounds is:

1. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
2. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$
3. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(a) $\mu_{1}>\mu_{2}>\mu_{3}$
(b) $\mu_{2}>\mu_{3}>\mu_{1}$
(c) $\mu_{3}>\mu_{1}>\mu_{2}$
(d) $\mu_{2}>\mu_{1}>\mu_{3}$
4. Which one of the follôwing compounds gives positive test for both nitrogen and halogen with its Lassaigne's extract?
(a) $\mathrm{CH}_{3} \mathrm{NH}_{2} \mathrm{HCl}$
(b) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HC}$

-

(c) $\mathrm{NH}_{4} \mathrm{Cl}$
(d) $\mathrm{H}_{2} \mathrm{NNH}_{2}$. HCl
5. Which one of the following compounds is optically actibe?

(1)

(2)

(3)

(4)
(a) 1
(b) 2
(c) 3
(d) 4
6. The compounds that react with aqueous NaHCO_{3} to release CO_{2} are

[^0]ASPIRATION ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE

(1)

(2)

(3)

(4)
(a) 1 and 3
(b) 2 and 4
(c) 2 and 3
(d) 1 and 4
7. The complementary strand of DNA for the following single stranded DNA sequence, $5^{\prime}-\mathrm{A}-\mathrm{T}-\mathrm{C}-\mathrm{A}-\mathrm{T}-\mathrm{G}-\mathrm{C}-3^{\prime}$ is:
(a) $5^{\prime}-\mathrm{A}-\mathrm{T}-\mathrm{C}-\mathrm{A}-\mathrm{T}-\mathrm{G}-\mathrm{C}-3^{\prime}$
(b) $5^{\prime}-\mathrm{T}-\mathrm{A}-\mathrm{G}-\mathrm{T}-\mathrm{A}-\mathrm{C}-\mathrm{G}-3^{\prime}$
(c) $5^{\prime}-\mathrm{G}-\mathrm{C}-\mathrm{A}-\mathrm{T}-\mathrm{G}-\mathrm{A}-\mathrm{T}-3^{\prime}$
ON
(d) $5^{\prime}-\mathrm{C}-\mathrm{G}-\mathrm{T}-\mathrm{A}-\mathrm{C}-\mathrm{T}-\mathrm{A}-3^{\prime}$
8. The value of ' n ' for the following molecule according to Huckel's rule is:

(a) 16
(b) 4
(c) 3
(d) 14
9. Which one of the following compounds reacts with nitrous acid to give the product [P]?

TIA,
(a)

(c)

10. The main product obtained in the following reaction is:
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE |NEET | JEE

(a)

(b)

(c)

(d)

11. For a reaction with rate equation $-\mathrm{dC} / \mathrm{dt}=\mathrm{KC} \mathrm{C}_{2}$, C_{0} and C are the concentrations of the reactant at time 0 and t respectively. If 10 minutes were required for C 0 to become $\mathrm{C}_{0} / 2$, the time required for C_{0} to become $\mathrm{C}_{0} / 4$ is
(a) 10 min
(b) 20 min
(c) 30 min
(d) 40 min
12. For a cyclic process performed by an ideal gas, changes in some thermodynamic functions are zero. Indicate the set in which all the functions are zero.
(a) $w, \Delta E, \Delta H, \Delta G$
(b) $q, \Delta s, \Delta H, \Delta A$
(c) $q, \Delta E, \Delta S, \Delta G$
(d) $\Delta \mathrm{E}, \Delta \mathrm{S}, \Delta \mathrm{H}, \Delta \mathrm{A}$
13. The plot of Gibb's free energy G and the extent of a reaction ξ is given below for the reaction $A \rightleftharpoons B$. If μ_{A} and μ_{B} are the chemical potentials of A and B respectively, the incorrect statements is

(a) at point $X, \mu_{A}>\mu_{B}$
(b) at point $\mathrm{Y}, \Delta \mathrm{G}=0$
(c) at point $Z, \mu_{A}>\mu_{B}$
(d) at equilibrium, the composition of the reaction mixture can be identified

1SPIP11O I ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
14. The overlap between the atomic orbitals sketched below is:

(b) Negative
(a) Positive

(c) Zero
(d) No overlap
15. The normalisation constant ' A ' for the wave function $\psi(\phi)=A e^{(i m \phi)}$ where $0 \leq \phi \leq 2 \pi$ is :
(a) $\frac{1}{\sqrt{2 \pi}}$
(b) $\sqrt{2 \pi}$
$01{ }^{\text {(c) } 2 \pi}$
(d) $\frac{1}{\sqrt{2}}$
16. The normalization constant ' A ' for the wave function $\psi(\phi)=A e^{(i m \phi)}$ where $0 \leq \phi \leq 2$ π is
(a) $\frac{1}{2 \pi}$
(b) $\sqrt{2 \pi}$

(d) $\frac{1}{\sqrt{2}}$
17. The standard potential of a Daniel cell is +1.10 V and the equilibrium constant for the cell reaction is 15×10^{37}. It can be concluded that
(a) zinc oxidizes copper
(b) displacement of copper by zinc goes to near completion
(c) copper oxidizes zinc
(d) displacement of zinc by copper goes to completion
18. Which one of the following figures, showing kinetic energy of the ejected electron versus the frequency (v) of the incident photon, represents the Einstein's photoelectric effect?
(a)
(b)

(c)
(d)

(a)

1SPMT1O ACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE
19. An aqueous solution containing $0.01 \mathrm{M} \mathrm{FeCl}_{3}$ and $0.06 \mathrm{M} \mathrm{HCIO}_{4}$ has the same ionic strength as a solution of
(a) 0.09 m NaCl
(b) $0.04 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(c) $0.06 \mathrm{M} \mathrm{CuSO}_{4}$
(d) $0.03 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
20. Which one of the following species is the conjugate base of HO^{-}?
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) O^{2-}
(c) O_{2}^{-}
(d) O_{3}^{2-}
21. The solid-liquid phase diagram for the $\mathrm{Mg}-\mathrm{Zn}$ system is shown in the figure below where the vertical line at $\mathrm{x}(\mathrm{Mg})=0.33$ represents the formation of a congruent melting compound MgZn_{2}. The figure is divided into seven regions depending upon the physical state of the system. The composition of the region \#6 represents

22. In the extraction of metals from their ores, which one of the following reduction methods can bring about an non-spontaneous reduction?
(a) electrolytic carbon
(b) reduction by carbon
(c) reduction by another metal
(d) reduction by hydrogen
23. The correct order of the ionic radii is:
(a) $\mathrm{ln}^{3+}>\mathrm{Sn}^{4+}>\mathrm{Sr}^{2+}>\mathrm{Rb}^{+}$
(b) $\mathrm{Sn}^{4+}>\mathrm{ln}^{3+}>\mathrm{Sr}^{2+}>\mathrm{Rb}^{+}$
(c) $\mathrm{Rb}^{+}>\ln ^{3+}>\mathrm{Sr}^{2+}>\mathrm{Sn}^{4+}$
(d) $\mathrm{Rb}^{+}>\mathrm{Sr}^{2+}>\ln ^{3+}>\mathrm{Sn}^{4+}$
24. The correct valence shell electronic configuration of the element with atomic number 22 is
(a) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2}$
(b) $[\mathrm{Ar}] 3 \mathrm{~d}^{4}$
(c) $[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}$
(d) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{2}$

1SPIP11 O A ACADEMY
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE | NEET | JEE
25. The ligand with only sigma (σ) bonding character is:
(a) CN^{-}
(b) CH_{3}^{-}
(c) CO
(d) NO
26. Which one of the following species is NOT isoelectronic with CO?
(a) N_{2}
(b) CN^{-}
(c) NO^{+}
(d) O_{2}^{+}
27. During Wittig reaction, a phosphorus yield gets converted to
(a) $\mathrm{R}_{3} \mathrm{P}$
(b) $\mathrm{R}_{3} \mathrm{P}=0$
(c) $\mathrm{R}_{3} \mathrm{P}^{+} \mathrm{HOH}^{-}$
(d) $\mathrm{R}_{2} \mathrm{P}-\mathrm{PR}_{2}$
28. Which of the following reactions does NOT give $\mathrm{H}_{3} \mathrm{PO}_{4}$?
(a) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
(b) $\mathrm{P}_{4} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
(c) $\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
(d) $\mathrm{P}_{4} \mathrm{~S}_{10}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
29. The ionic radii of Ca^{2+} and F^{-}are 100 pm and 133 pm respectively. The coordination number of Ca^{2+} in the ionic solid wilt be
(a) 8
(b) 6
(c) 4
(d) 2
30. The shape of CH_{3}^{-}ion is:

31. Identify reagent (P) and write the structure of products $(Q, S$ and $T)$ in the following

ASPIRRTO TACADEMY
dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE |NEET | JEE

(b) Complete hydrolysis of a penta-peptide with 6 N HCl at $110^{\circ} \mathrm{C}$ in a sealed tube gave 2 equivalents of glycine, one equivalent each of tyrosine, leucine and phenylalanine. Reaction of the pentapeptide with Sanger's reagent (2, 4dinitrofluorobenzene, DNFB) and subsequent hydrolysis gave the DNFB derivative of tyrosine. Chymotrypsin cleavages of this peptide yielded tyrosine, leucine and a tripeptid. Deduce the sequence of the pentapeptide.
33. Complete the following reactions with appropriate structures for $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ and I.

34. (a) Account for the following transformation with an appropriate mechanism. Give the structure of the Hoffmann exhaustive methylation product of 1, 2dihydro derivative of $[\mathrm{X}]$.

[^1]dream high, beyond the sky Best Institute for ITT JAM | CSIR NET | GATE | NEET | JEE

(b) The optically pure ester [J] is hydrolysed in aqueous acetic acid to form a racemic mixture of cis-4, 4-dimethyl-2-acetoxycyclopentanol [K]. Give a mechanistic explanation to account for the formation of $[\mathrm{K}]$ and the observed change in the optical activity.

35. (a) M is a first row transition metal. MCl 2 on treatment with aqueous ammonia gives a blue coloured solution of complex N. A solution of MCl2 also gives a bright red precipitate of complex 0 with ethanoic dimethylglyoxime.
(i) Identify M and draw the structure of 0 .
(ii) Determine the hydridisation of M in complex N .
(iii) Identify the paramagnetic complex.
(b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ gave an absorption at $208 \mathrm{~kJ} / \mathrm{mol}$ which corresponds to Δ_{0}.

Calculate the crystal field stabilization energy of this complex in $\mathrm{kJ} / \mathrm{mol}$.
36. (a) Consider the ethers H3SiOSiH3 and H3COCH3.
(i) Which ether has more lewis base character?
(ii) Which angle [$\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ and $\mathrm{C}-\mathrm{O}-\mathrm{C}$] is greater? Justify your answer.
(b) Starting from SiO2, show how the following polymer is prepared industrially?

[^2]ASPIRATIONTACADEMY
dream high, beyond the sky Best Institute for IIT JAM | CSIR NET | GATE | NEET | JEE
37. (a) A solution of metal ion $\left(\mathrm{M}^{2+}\right)$ when treated with $\mathrm{H}_{2} \mathrm{~S}$ gas gives a black precipitate A. Precipitate A dissolved in hot concentrated nitric acid to give B along with elemental sulfur. The metal ion solution also gives a white precipitate C with an excess of KI. Write the chemical formulae of A, B, and C
(b) Why are potassium permanganate solutions unstable in the presence of Mn^{2+} ions? In the quantitative estimation of iron present in iron ores dissolved in dilute HCl , titrations with dichromate are preferred over titrations with permanganate. Rationalise.
38. (a) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ and $\mathrm{Al}_{2} \mathrm{Me}_{6}$ are dimeric in gas phase. Draw their structures. Which compound has more Lewis acid character? Explain.
(b) Arrange the halides $\mathrm{SnCl}_{2}, \mathrm{PbCl}_{2}, \mathrm{SiCl}_{2}$ in increasing order of their stability. Give reasons for your answer.
39. (a) Acidification of an aqueous solution of yeHow sodium chromate gives an orange coloured A. A compound solution of A on treatment with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives a bright orange solid B . Compound A in the presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with anion C to give a deep red coloured liquid. Identify A, B and C .
(b) ${ }_{84}^{215} \mathrm{Po}$ undergoes an α emission to give element X followed by a β emission to give element Y .
(i) Write the valence shell electronic configuration of Y.
(ii) Indicate the groups of the periodic table to which X and Y belong.
40. (a) When an ideal monoatomic gas is expanded from $1.5 \mathrm{bar}, 24.8 \mathrm{~L}$ and 298 K into an evacuated container, the final volume becomes 49.6 L . Calculate $\Delta \mathrm{H}, \Delta \mathrm{S}$ and ΔG for the process.

kATA,

(b) The Maxwell distribution function for the distribution of speeds of molecules in gaseous systems is given by

$$
\mathrm{f}(\mathrm{c})=4 \pi\left(\frac{\mathrm{~m}}{2 \pi \mathrm{kT}}\right)^{3 / 2} \mathrm{c}^{2} \exp \left(\frac{-\mathrm{mc}^{2}}{2 \mathrm{kT}}\right)
$$

Show that the most probable speed, $\mathrm{C}_{\mathrm{mp}}=\left(\frac{2 \mathrm{kT}}{\mathrm{m}}\right)^{\frac{1}{2}}$
41. (a) At 600 K and 200 bar, a $1: 3$ (molar ratio) mixture of A_{2} and B_{2} react to form an equilibrium mixture containing $\mathrm{x}_{\mathrm{AB}_{3}}=0.60$. Assuming ideal gas behaviour, calculate Kp for the reaction: $\mathrm{A}_{2}(\mathrm{~g})+3 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}_{3}(\mathrm{~g})$

ASPIRNTO ACADEMY
dream high, beyond the sky Best Institute for ITTJAM | CSIR NET | GATE [NEET | JEE
(b) A 50 mL 0.05 M solution of $\mathrm{Fe}(\mathrm{II})$ is titrated with 0.05 M solution of $\mathrm{Ce}(\mathrm{IV})$ in the presence of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $25^{\circ} \mathrm{C}$. Calculate the equivalence point potential and the equilibrium constant K in terms of $\log \mathrm{K}$.

$$
\left[\mathrm{E}^{0}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)=+0.75 \mathrm{~V}, \mathrm{E}^{0}\left(\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}\right)=+1.45 \mathrm{~V}\right]
$$

42. (a) The vapour pressure of $\mathrm{D}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$ is 745 mm Hg . When 15 g of a non-volatile compound is dissolved in 200 g of $\mathrm{D}_{2} \mathrm{O}$, the pressure change to 730 mm Hg . Assuming the applicability of Raoult's law, calculate the molecular weight of the compound.
(b) An enzyme following Michaelis-Menten kinetics was found to have highest activity at $37^{\circ} \mathrm{C}$ and pH 7.0 . If the maximum velocity $\mathrm{V}_{\max }$ for this enzyme was $2.4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ with an initial enzyme concentration $[\mathrm{E}]_{0}=2.4 \mathrm{nM}$, calculate the turnover frequency.
43. (a) Consider the 4π electrons in cyclobutadiene to be free particles in a 2 dimensional square box of length 2 A . Calculate the wavelength of the electronic transition from the highest occupied molecular orbita[(HOMO) to the lowest unoccupied molécular orbital (LUMO). Also write down the normalised wave functions for the occupied degenerate states.
(b) The reactions:

is first order in both directions. At $25^{\circ} \mathrm{C}$, the equilibrium constant (K) of this reaction is 0.40 . If 0.115 mol . dm^{-3} of cis-isomer is allowed to equilibrate, calculate the equilibrium concentration of each isomer
44. (a) With I, j and k as the unit vectors along, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes, express the vector, $\overrightarrow{\mathrm{P}_{1} \mathrm{P}_{2}}$ in the given figure in terms of the coordinate of P_{1} and P_{2}. Also determine the dot products of the unit vectors, $\mathrm{I}, \mathrm{j}, \mathrm{k}$.
[^3]ASPIRATIONTAcademy
dream high, beyond the sky Best Institute for IT JAM | CSIR NET | GATE | NEET |JEE

(b) Deduce whether the matrices A and B commute or not.

$$
A=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

[^0]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 空
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)
 욜 +918582979309
 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |
 Page|1

[^1]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 울 +917003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)

[^2]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro)

[^3]: South Kolkata: 30A, Southern Avenue Kolkata - 26. (Near Kalighat Metro)
 +91 7003268624
 North Kolkata: 47, Tarak Pramanick Rd Kolkata - 06. (Near Girish Park Metro) +91 8582979309
 Page|10 Website: www.aspirationacademy.in | Email: info@aspirationacademy.in |

