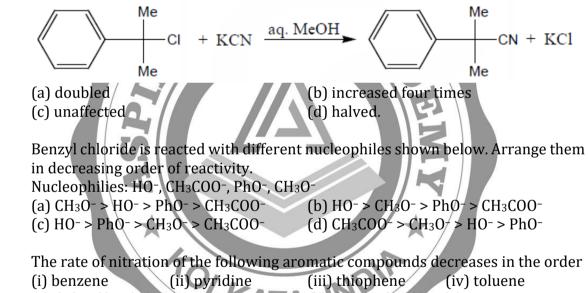


IIT JAM 2005

1. Arrange the following in the decreasing order of acidity of the hydrogen indicated in italic

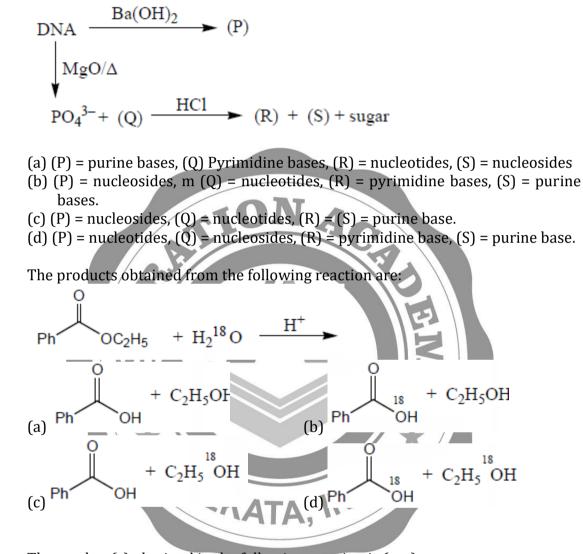

(i) CH₃COO<u>CH₃</u> (iii) CH₃OO<u>CH₂</u>COOCH₃ (a) (ii) > (iii) > (i) > (iv) (c) (iv) > (iii) > (ii) > (i)

3.

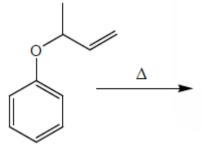
4.

(ii) CH₃CO<u>CH₂</u>COCH₃
(iv) CH₃CO<u>CH₂</u>NO₂
(b) (iv) > (ii) > (iii) > (i)
(d) (ii) > (iv) > (iii) > (i)

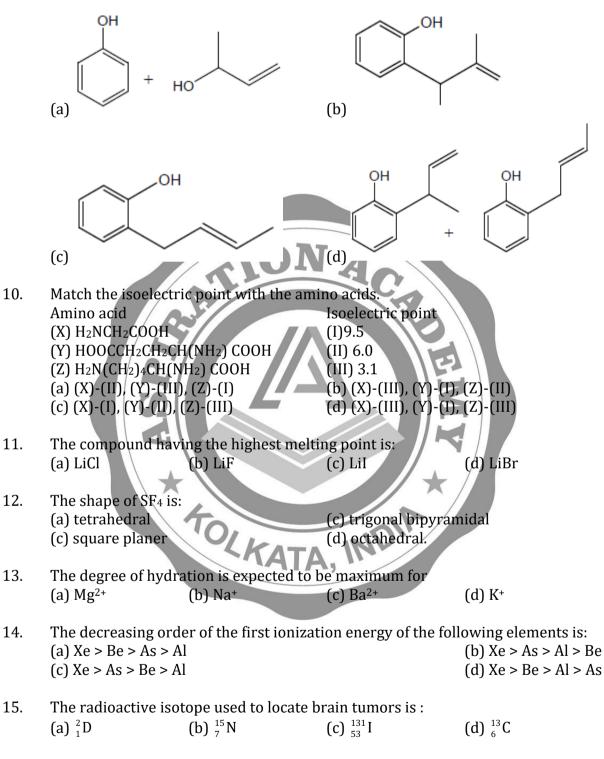
2. For the reaction shown below if the concentration of KCN is increased four time, the rate of the reaction will be



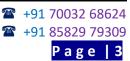
- (i) benzene(ii) pyridine(iii) thiophene(iv) toluene(a) (iv) > (i) > (ii) > (ii) > (ii)(b) (ii) > (iv) > (i) > (ii)(b) (ii) > (iv) > (i) > (ii)(c) (ii) > (ii) > (i) > (iv)(iv) (iv) > (iv) > (iv) > (iv) > (iv)(iv) (iv) > (iv) > (iv) > (iv)
- 5. The major product formed in the reaction of 1, 3-butadiene with bromine is
 (a) BrCH₂CH(Br) CH = CH₂
 (b) CH₂ = CH CH₂CH₂Br
 (c) CH₂ = C(Br) C (Br) = CH₂
 (d) BrCH₂CH = CHCH₂Br
- 6. The reaction of (+) 2-iodobutane and NaI* (I* is radioactive isotope of iodine) in acetate was studied by measuring the rate of recemization (k_t) and the rate of incorporation of I* (k_i). (+) CH₃CH(I) CH₂CH₃ + NaI* \rightarrow CH₃CH(I*) CH₂CH₃ + NaI For this reaction, the relationship between k_r and k_i is: (a) k_i = 2× k_r (b) k_i = (1/2) × k_r (c) k_i = k_r (d) k_i = (1/3) × k_r


+91 70032 68624
 +91 85829 79309
 Page | 1

7. In the scheme shown above (P), (Q), (R) and (S) are



9. The product(s) obtained in the following reaction is (are)



8.

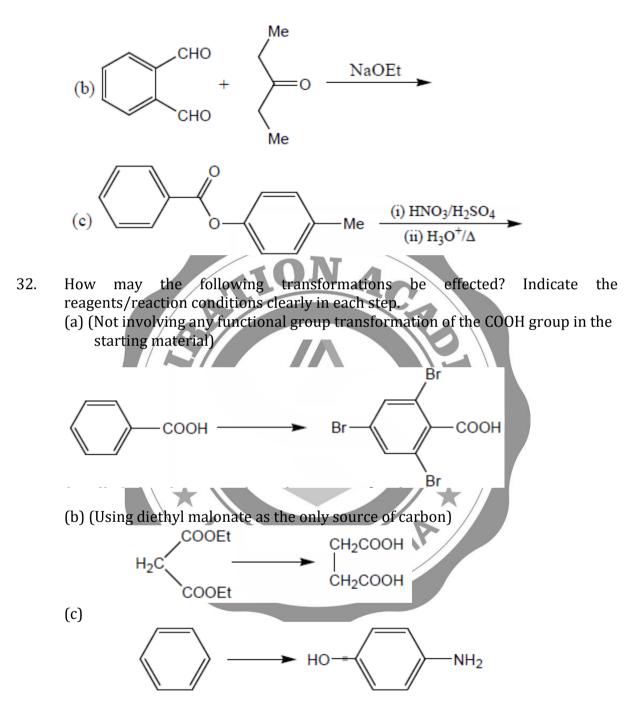
16. The crystal field stabilization energy of high spin d⁷ octahedral complex is:

	(a) $-\frac{4}{5}\Delta_0 + 2P$	(b) $-\frac{4}{5}\Delta_0+3P$	$(c) -\frac{9}{5}\Delta_0 + 2P$	$(d) -\frac{9}{5}\Delta_0 + 3P$
17.		the most colour amo (b) $\left[MnCl_4 \right]^{2-}$	ng the following is: (c) $\left[CoCl_4 \right]^{2-}$	(d) $\left[CoF_{6} \right]^{3-}$
18.	On addition of a s standing due to the (a) Ag	e formation of :	a solution of Na2S (c) Ag2S2O2	2O3, it turns black on (d) Ag2SO4
19.	Among the followin (i) $\left[Ru(bipyridyl) \right]$ (iii) trans - $\left[CrCl_2 \right]$ The ones that show (a) (i), (ii), (iv)	$\left[\frac{1}{2} \right]^{3}$	(iv) cis - CrCl ₂ (ox: (c) (ii), (iii), (iv)	(ii) $\left[Cr(EDTA) \right]^{-}$ alate) ₂ \int_{2}^{3-} (d) (i), (iii), (iv)
20.	The electronic con in octahedral envir (a) d ¹ and high spir (c) d ² and high spir	onment are	e orbital angular mo (b) d ¹ and d ² (d) high spin d ⁴ and	mentum contribution d high spin d ⁶
21.	For an ideal solution (a) $\Delta H_{mixing} = 0$	on formed by mixing (b) ∆H _{mixing} <0	of pure liquids A and (c) $\Delta H_{mixing} > 0$	
22.	The relationship between the equilibrium constant K ₁ for the reaction: $CO(g) + \frac{1}{2} O_2(g) \rightleftharpoons CO_2(g)$ and the equilibrium constant K ₁ for the reaction: $2CO(g) + O_2(g) \rightleftharpoons 2CO_2(g)$ is (a) $2K_1 = K_2$ (b) $K_1 = K_2^2$ (c) $K_1 = K_2$ (d) $K_1^2 = K_2$			
23.	(a) $\frac{\mu}{Z^2}$	he ground state ener (b) $\frac{Z^2}{\mu}$ uced mass and Z is th	rgy is proportional to (c) μΖ ² ne nuclear charge.	(d) $\frac{1}{\mu Z^2}$

24. The value of integral $\int e^{-x} x^2 dx$ is

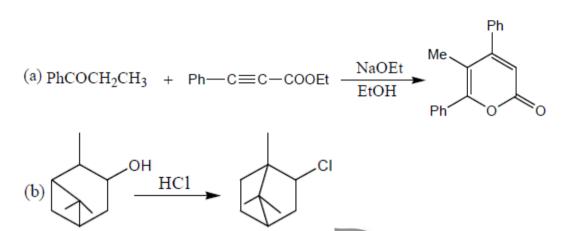
- (a) $x^2e^{-x} + 2xe^{-x} + 2e^{-x}$ (b) $\frac{-1}{2}(x^2e^{-x} + 2xe^{-x} + 2e^{-x})$ (c) $\frac{1}{2}(x^2e^{-x} + 2xe^{-x} + 2e^{-x})$ (d) $-x^2e^{-x} - 2xe^{-x} - 2e^{-x}$
- 25. For the reaction $\alpha A \rightarrow$ products, the plot of $\frac{1}{[A]}$ versus time (t) gives a straight

line. The order of the reaction is (a) 0 (b) 1 (c) 2 (d) 3


- 26. The pH of the solution prepared from 0.005 mole of Ba(OH)₂ in 100 cc water is (a) 10 (b) 12 (c) 11 (d) 13
- 27. For an electron whose x-positional uncertainty is 1×10^{-10} m, the velocity in ms⁻¹ will be of the order of (Data: $m_e = 9 \times 10^{-31}$ kg, $h = 6.6 \times 10^{-34}$ J s) (a) 10^6 (b) 10^9 (c) 10^{12} (d) 10^{15}
- 28. For the following system in equilibrium: $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$, the number of components (C), phases (P) and degrees of freedom (F), respectively, are (a) 2, 2, 2 (b) 1, 3, 0 (c) 3, 3, 2 (d) 2, 3, 1
- 29. For the distribution of molecular velocities of gases, identify the correct order from the following (where V_{mp} , V_{av} and V_{rms} are the most probable velocity, average velocity and root mean square velocity, respectively):

(a)
$$v_{rms} > v_{av} > v_{mp}$$
 (b) $v_{mp} > v_{rms} > v_{av}$ (c) $v_{av} > v_{rms} > v_{mp}$ (d) $v_{mp} > v_{av} > v_{rms}$

- 30. Given that $E_{fe^{3+}/Fe}^{0} = -0.44V$ and $E_{Fe^{3+}/Fe^{2+}}^{0} = 0.77V$, the $E_{Fe^{3+}/Fe}^{0}$ is (a) 1.21 V (b) 0.33 V (c) -0.036 V (d) 0.036 V
- 31. Identify the major product(s) formed in the following reactions. Intermediates and reaction mechanisms need not be discussed.



33. Suggest a suitable mechanism for each of the following reactions.

- 34. Rationalize the following observations using suitable mechanism.(a) Nitration of 4 t-butyltoluene gives 4-nitrotoluene as one of the products.
 - (b) cis-1-t-butylcyclohexyltrimethylammonium hydroxide undergoes Hoffmann elimination to yield 4-t-butylcyclohexene whereas the trans isomer does not (use conformations) explain.
 - (c) PhMgBr + 2PhCHO $\xrightarrow{1.dry \text{ ether}}$ PhCOPh + PhCH₂OH
- 35. (a) Suggest a chemical method for the separation of a mixture contain p-N, Ndimethylaminophenol and p-aminobenzoic acid and give a confirmatory test for phenol.

(b) Write the structures of X, Y and Z in the following
(i)
$$NH_2$$
 $\frac{1. \text{NaNO}_2/\text{dil. HCl}, 0^{\circ}\text{C}}{2. \beta-\text{naphthol/NaOH}} X$
(ii) $NHMe$ $\frac{\text{NaNO}_2/\text{dil. HCl}}{Y}$
(iii) $NHMe$ $\frac{\text{NaNO}_2/\text{dil. HCl}}{Z}$

36. (a) Predict the hybridization and draw the structure of the following molecules based on VSEPR theory (a) I_3^- (b) SO_3^{2-} (c) $P(CH_3)_2F_2$

- (b) Explain why PCl_5 exists and PH_5 does not.
- 37. (a) Write balanced equations for the formation of (i) $P_2O_7^{-4}$ from PO_4^{-3}
 - $(ii)\left[(H_2O)_4 Fe(OH)_2 Fe(OH_2)_4\right]^{4+}$ from $\left[Fe(OH_2)_6\right]^{+3}$
 - (b) Which one of the two solutions has lower pH? Justify your answer.

 $(i) 0.1 M Fe(ClO_4)_2 \text{ or } 0.1 M Fe(ClO_4)_3.$

(ii) $0.1 \,\mathrm{M\,Hg}(\mathrm{NO}_3)_2$ or $0.1 \,\mathrm{M\,Zn}(\mathrm{NO}_3)_2$.

(a) Between Co(H₂O)²⁺₆ and Cu(H₂O)²⁺₆, which has more distorted structure and why?
(b) Calculate CFSE (in unis of Δ₀) and spin only magnetic moment for the

following complexes.

- (i) $\left[\text{CoF}_6 \right]^{3-}$ (ii) $\left[\text{Fe}(\text{CN})_6 \right]^{3-}$ (iii) $\left[\text{NiCl}_4 \right]^{2-}$
- 39. (a) The radioactive element Ra(Z=86) emits three alpha particles in succession. Deduce in which group the resulting element will be found? (b) A radioisotope sample has an initial activity of 23 dis/min. After 1/2 h, the activity is 11.5 dis/min. How many atoms of the radioactive nuclide were present originally? $[\alpha t_{1/2} = 0.69]$
- 40. (a) Write the products of the following reactions: (i)CH₃I+HO⁻ \rightarrow (ii)CF₃I+HO⁻ \rightarrow (iii)2CF₃I+Na[Mn(CO)₅] \rightarrow (b) Arrange BF₃, BCl₃ and BBr₄ in the increasing order of Lewis acidity and justify.
- 41. Justify the following:
 (a) Considering CO₂ as an ideal gas, equipartition theorem products its total energy as 6.5 kT.

(b) ΔS for a process is the same whether the process takes place reversibly or irreversibly.

(c) The quantity ΔG equal the maximum non-expansion work done by a system in a constant temperature-pressure process.

(d) At constant temperature and pressure, $\Delta G = 0$ for a reversible phase change.

(e) Transition states cannot be isolated as independent chemical species.

- 42. The rate constant k for a second order reaction $P + Q \rightarrow Products$ is expressed as $\log_{10}k = 20 \frac{3000}{T}$, where the concentration is in mol lit⁻¹, T is in absolute temperature and time is in minutes. The initial concentrations of both the reactants are 0.05 M. Calculate the activation energy and half life of the reaction at 27°C. (R = 2 cal K⁻¹ mol⁻¹)
- 43. The equilibrium constant for the reaction $Fe_3O_4(s) + CO(g) \rightleftharpoons 3FeO(s) + CO_2(g)$ at 600°C is 1.00. If a mixture initially consisting of 1 mole of Fe_3O_4 . 2 moles of CO, 0.5 mole of FeO and 0.3 mole of CO_2 is heated to 600°C at constant total pressure of 5 atmospheres, how many moles of each substance would be present at equilibrium?
- 44. (a) Use the time-independent Schrödinger equation to calculate the energy of a particle of Mass "m" with V = 0 in the state $\psi = \sqrt{\frac{8}{a_0}} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a} \sin \frac{\pi z}{a}$ in a cubical box of length "a".

* TOLKATA, INDIA

(b) At 20°C, the vapor pressure of two pure liquids X and Y which form an ideal solution are 70 torr respectively. If the mole fraction of X in solution is 0.5, find the mole fraction of X and Y in the vapor phase in equilibrium with the solution.

